Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acad Radiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777719

ABSTRACT

RATIONALE AND OBJECTIVES: Diagnosing subcentimeter solid pulmonary nodules (SSPNs) remains challenging in clinical practice. Deep learning may perform better than conventional methods in differentiating benign and malignant pulmonary nodules. This study aimed to develop and validate a model for differentiating malignant and benign SSPNs using CT images. MATERIALS AND METHODS: This retrospective study included consecutive patients with SSPNs detected between January 2015 and October 2021 as an internal dataset. Malignancy was confirmed pathologically; benignity was confirmed pathologically or via follow-up evaluations. The SSPNs were segmented manually. A self-supervision pre-training-based fine-grained network was developed for predicting SSPN malignancy. The pre-trained model was established using data from the National Lung Screening Trial, Lung Nodule Analysis 2016, and a database of 5478 pulmonary nodules from the previous study, with subsequent fine-tuning using the internal dataset. The model's efficacy was investigated using an external cohort from another center, and its accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were determined. RESULTS: Overall, 1276 patients (mean age, 56 ± 10 years; 497 males) with 1389 SSPNs (mean diameter, 7.5 ± 2.0 mm; 625 benign) were enrolled. The internal dataset was specifically enriched for malignancy. The model's performance in the internal testing set (316 SSPNs) was: AUC, 0.964 (95% confidence interval (95%CI): 0.942-0.986); accuracy, 0.934; sensitivity, 0.965; and specificity, 0.908. The model's performance in the external test set (202 SSPNs) was: AUC, 0.945 (95% CI: 0.910-0.979); accuracy, 0.911; sensitivity, 0.977; and specificity, 0.860. CONCLUSION: This deep learning model was robust and exhibited good performance in predicting the malignancy of SSPNs, which could help optimize patient management.

2.
Insights Imaging ; 15(1): 109, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679659

ABSTRACT

OBJECTIVE: To determine whether quantitative parameters of detector-derived dual-layer spectral computed tomography (DLCT) can reliably identify epidermal growth factor receptor (EGFR) mutation status in patients with non-small cell lung cancer (NSCLC). METHODS: Patients with NSCLC who underwent arterial phase (AP) and venous phase (VP) DLCT between December 2021 and November 2022 were subdivided into the mutated and wild-type EGFR groups following EGFR mutation testing. Their baseline clinical data, conventional CT images, and spectral images were obtained. Iodine concentration (IC), iodine no water (INW), effective atomic number (Zeff), virtual monoenergetic images, the slope of the spectral attenuation curve (λHU), enhancement degree (ED), arterial enhancement fraction (AEF), and normalized AEF (NAEF) were measured for each lesion. RESULTS: Ninety-two patients (median age, 61 years, interquartile range [51, 67]; 33 men) were evaluated. The univariate analysis indicated that IC, normalized IC (NIC), INW and ED for the AP and VP, as well as Zeff and λHU for the VP were significantly associated with EGFR mutation status (all p < 0.05). INW(VP) showed the best diagnostic performance (AUC, 0.892 [95% confidence interval {CI}: 0.823, 0.960]). However, neither AEF (p = 0.156) nor NAEF (p = 0.567) showed significant differences between the two groups. The multivariate analysis showed that INW(AP) and NIC(VP) were significant predictors of EGFR mutation status, with the latter showing better performance (p = 0.029; AUC, 0.897 [95% CI: 0.816, 0.951] vs. 0.774 [95% CI: 0.675, 0.855]). CONCLUSION: Quantitative parameters of DLCT can help predict EGFR mutation status in patients with NSCLC. CRITICAL RELEVANCE STATEMENT: Quantitative parameters of DLCT, especially NIC(VP), can help predict EGFR mutation status in patients with NSCLC, facilitating appropriate and individualized treatment for them. KEY POINTS: Determining EGFR mutation status in patients with NSCLC before starting therapy is essential. Quantitative parameters of DLCT can predict EGFR mutation status in NSCLC patients. NIC in venous phase is an important parameter to guide individualized treatment selection for NSCLC patients.

3.
Clin Respir J ; 18(3): e13743, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38529681

ABSTRACT

BACKGROUND: This study aimed to investigate the radiological, pathological, and prognostic characteristics of large consolidative-type pulmonary invasive mucinous adenocarcinomas (IMA). METHODS: We retrospectively reviewed 738 patients who confirmed IMA between January 2010 and August 2022, and two radiologists reviewed imaging data to determine subtypes. We included 41 patients with pathologically large consolidative-type IMA. We analyzed their radiological, pathological, and prognostic characteristics. The recurrence-free survival (RFS) and overall survival (OS) were determined using the Kaplan-Meier method. RESULTS: Most lesions were located in the lower lobe, with 46.3% patients showing multiple lesions. Halo, angiogram, vacuole, air bronchogram, and dead branch sign were observed in 97.6%, 73.2%, 63.4%, 61.0%, and 61.0% of the cases, respectively. Unevenly low enhancement was observed in 88.89% of patients. T3 and T4 pathological stages were observed in 50.0% and 30.6% of patients, respectively. Lymph node metastasis was observed in 16.7% patients, with no distant metastasis. Spread-through air spaces and intrapulmonary dissemination were observed in 27.8% and 19.4% patients, respectively. Moreover, Kirsten rat sarcoma viral oncogene mutations were found in 68.6% of cases, and no epidermal growth factor receptor mutations were seen. Among all mutation sites, G12V mutation is the most common, accounting for 40%. The average RFS and OS were 19.4 and 66.4 months, respectively, with 3-year RFS and OS rates of 30.0% and 75.0%, respectively. Pleural invasion and lymph node metastasis were independent risk factors for diagnosis. CONCLUSION: Halo, vacuole, angiogram, and dead branch signs were frequently observed in consolidative-type IMA. Kirsten rat sarcoma viral oncogene mutations are common in consolidative-type IMA, especially site G12V, whereas epidermal growth factor receptor mutations were rare; therefore, gene immunotherapy was more difficult. Most patients were in stage T3-T4; however, lymph node metastasis was rare.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma, Mucinous , Adenocarcinoma , Lung Neoplasms , Humans , Adenocarcinoma/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lymphatic Metastasis , Retrospective Studies , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Prognosis , Adenocarcinoma, Mucinous/diagnostic imaging , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/drug therapy , Neoplasm Staging
4.
Eur Radiol Exp ; 8(1): 8, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38228868

ABSTRACT

BACKGROUND: We aimed to develop a combined model based on radiomics and computed tomography (CT) imaging features for use in differential diagnosis of benign and malignant subcentimeter (≤ 10 mm) solid pulmonary nodules (SSPNs). METHODS: A total of 324 patients with SSPNs were analyzed retrospectively between May 2016 and June 2022. Malignant nodules (n = 158) were confirmed by pathology, and benign nodules (n = 166) were confirmed by follow-up or pathology. SSPNs were divided into training (n = 226) and testing (n = 98) cohorts. A total of 2107 radiomics features were extracted from contrast-enhanced CT. The clinical and CT characteristics retained after univariate and multivariable logistic regression analyses were used to develop the clinical model. The combined model was established by associating radiomics features with CT imaging features using logistic regression. The performance of each model was evaluated using the area under the receiver-operating characteristic curve (AUC). RESULTS: Six CT imaging features were independent predictors of SSPNs, and four radiomics features were selected after a dimensionality reduction. The combined model constructed by the logistic regression method had the best performance in differentiating malignant from benign SSPNs, with an AUC of 0.942 (95% confidence interval 0.918-0.966) in the training group and an AUC of 0.930 (0.902-0.957) in the testing group. The decision curve analysis showed that the combined model had clinical application value. CONCLUSIONS: The combined model incorporating radiomics and CT imaging features had excellent discriminative ability and can potentially aid radiologists in diagnosing malignant from benign SSPNs. RELEVANCE STATEMENT: The model combined radiomics features and clinical features achieved good efficiency in predicting malignant from benign SSPNs, having the potential to assist in early diagnosis of lung cancer and improving follow-up strategies in clinical work. KEY POINTS: • We developed a pulmonary nodule diagnostic model including radiomics and CT features. • The model yielded the best performance in differentiating malignant from benign nodules. • The combined model had clinical application value and excellent discriminative ability. • The model can assist radiologists in diagnosing malignant from benign pulmonary nodules.


Subject(s)
Lung Neoplasms , Radiomics , Humans , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Diagnosis, Differential
5.
Front Psychol ; 14: 1148395, 2023.
Article in English | MEDLINE | ID: mdl-37397329

ABSTRACT

Introduction: Personal space (PS) is a safe area around an individual's body that affects spatial distance when socially interacting with others. Previous studies have shown that social interaction may modulate PS. However, these findings are often confounded by the effects of familiarization. Furthermore, whether the potential regulatory effects of social interaction on PS can be generalized from interacting confederates to strangers remains unclear. Methods: To answer these questions, we enrolled 115 participants in a carefully designed experiment. Results: We found that prosocial interaction in the form of a cooperative task effectively reduced PS, and this regulatory effect could be generalized from interacting confederates to non-interacting confederates. Discussion: These findings deepen our understanding of PS regulation and may be aid in the diagnosis and rehabilitation of dysfunctional social behaviors.

SELECTION OF CITATIONS
SEARCH DETAIL
...