Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38645731

ABSTRACT

P-glycoprotein (Pgp) is known for its dichotomous roles as both a safeguarding efflux transporter against xenobiotics and as a catalyst for multidrug resistance. Given the susceptibility of numerous therapeutic compounds to Pgp-mediated resistance, compliance with Food and Drug Administration (FDA) guidelines mandates an in-depth in vitro transport assay during drug development. This study introduces an innovative transport assay that aligns with these regulatory imperatives but also addresses limitations in the currently established techniques. Using Pgp-reconstituted liposomes and employing surface plasmon resonance (SPR), this study developed a distinct method of measuring the relative transport rates of Pgp substrates in a controlled microenvironment. The Pgp substrates selected for this study-quinidine, methadone, and desipramine-resulted in transport ratios that corroborate with trends previously observed. To assess the kinetics of Pgp-mediated transport, the results were analyzed by fitting the data to both currently proposed Pgp substrate translocation models-the vacuum cleaner and flippase models. While the resulting kinetic analysis in this study lends support predominantly to the vacuum cleaner model, this study most notably developed a novel method of assessing Pgp-mediated transport rates and real-time kinetics using surface plasmon resonance.

2.
AAPS J ; 26(3): 46, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609650

ABSTRACT

Patients with ß-thalassemia and sickle cell disease often rely on blood transfusions which can lead to hemochromatosis and chronic oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat hemochromatosis but is suboptimal to patients due to its poor pharmacokinetics which requires long-term infusion regimens. Although the oral route is preferable, DFO has limited oral bioavailability. Studies have shown that hyaluronic acid (HA) and bile acid (BA) can enhance the oral absorption of poorly absorbed drugs. To improve upon the oral delivery of DFO, we report on the synthesis and characterization of HA (MW 15 kD) conjugated to two types of BA, deoxycholic acid (DOCA) and taurocholic acid (TCA), and DFO. The resulting seven polymeric conjugates all formed self-assembled nanoparticles. The degree of BA and DFO conjugation to the HA polymer was confirmed at each step through nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. The best formulations for further in vitro testing were determined based on physicochemical characterizations and included HA-DFO, TCA9-HA-DFO, and DOCA9-HA-DFO. Results from in vitro assays revealed that TCA9-HA-DFO enhanced the permeation of DFO the most and was also less cytotoxic to cells compared to the free drug DFO. In addition, ferritin reduction studies indicated that the conjugation of DFO to TCA9-HA did not compromise its chelation efficiency at equivalent free DFO concentrations. This research provides supportive data for the idea that TCA conjugated to HA may enhance the oral absorption of DFO, improve its cytocompatibility, and maintain its iron chelation efficiency.


Subject(s)
Desoxycorticosterone Acetate , Hemochromatosis , Humans , Deferoxamine , Hyaluronic Acid , Bile Acids and Salts
3.
Mol Pharm ; 20(2): 1285-1295, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36622899

ABSTRACT

Hereditary hemochromatosis (HH) is a non-transfusional genetic iron overload (IO) disease wherein patients are not able to regulate dietary iron absorption, which ultimately leads to excess cellular iron accumulation. Preventative measures for HH mainly include phlebotomy and asking patients to minimize dietary iron intake. To investigate alternative iron reduction strategies, we report on prophylactic non-absorbable polymer-deferoxamine (DFO) conjugates capable of chelating and reducing excessive gut uptake of dietary iron. Three different sizes of the conjugates (56 nm, 256 nm, and 7.4 µm) were prepared, and their physicochemical properties, transit times in the gut under fed/fasted conditions, acute safety, and efficacy at reducing iron absorption in a dietary iron-overload mouse model were investigated. The conjugates were synthesized through reverse phase water-in-oil (w/o) emulsions, followed by conjugation of DFO to the resulting polymer scaffolds. In vitro studies using Caco-2 transwell assays showed that the conjugates could not permeate across the monolayer, were poorly endocytosed, and did not induce cellular toxicity. In vivo mouse studies via oral gavage demonstrated that polymer-DFO conjugates remained in the gastrointestinal (GI) tract for up to 12 h and significantly prevented escalation of serum ferritin levels and excess liver iron accumulation. Ex vivo images of the duodenum suggest that nanometer-sized conjugates (56 and 246 nm) perform better at chelating dietary iron based on longer retention times (i.e., entrapment in the villi of the duodenum) and an overall slower transit from the GI tract compared to larger micron-sized (7.4 µm) conjugates. Overall, nanometer-sized polymer-DFO conjugates were orally non-absorbable, appeared safe, and were more efficacious at reducing dietary iron absorption when taken with non-heme containing food.


Subject(s)
Deferoxamine , Iron Overload , Humans , Mice , Animals , Deferoxamine/chemistry , Iron, Dietary , Polymers/chemistry , Caco-2 Cells , Iron Chelating Agents/pharmacology , Iron/chemistry , Iron Overload/drug therapy
4.
Mol Pharm ; 19(7): 2406-2417, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35507414

ABSTRACT

The formation of biofilms by a microcolony of bacteria is a significant burden on the healthcare industry due to difficulty eradicating it. In this study, pH-responsive vesicles capable of releasing apramycin (APR), a model aminoglycoside antibiotic, in response to the low pH typical of establishedPseudomonas aeruginosa biofilms resulted in improved eradication of existing biofilms in comparison to the free drug. The amphiphilic polymeric vesicle (PV) comprised of block polymer poly (ethylene glycol)-block-poly 2-(dimethylamino) ethyl methacrylate (mPEG-b-pDEAEMA) averaged 128 nm. The drug encapsulation content of APR in PV/APR was confirmed to be 28.2%, and the drug encapsulation efficiency was confirmed to be 51.2%. At pH 5.5, PV/APR released >90% APR after 24 h compared to <20% at pH 7.4. At pH 5.5, protonation of the pDEAEMA block results in a zeta potential of +23 mV compared to a neutral zeta potential of +2.2 mV at pH 7.4. Confocal microscopy, flow cytometry, and scanning electron microscopy reveal that the positively charged vesicles can compromise the integrity of the planktonic bacterial membrane in a pH-dependent manner. In addition, PV/APR is able to diffuse into mature biofilms to release APR in the acidic milieu of biofilm bacteria, and PV/APR was more efficient at eliminating preexisting biofilms compared to free APR at 128 and 256 µg/mL. This study reveals that dynamic charge density in response to pH can lead to differential levels of interactions with the biofilm and bacterial membrane. This effectively results in enhanced antibacterial and antibiofilm properties against both planktonic and difficult-to-treat biofilm bacteria at concentrations significantly lower than those of the free drug. Overall, this pH-responsive vesicle could be especially promising for treating biofilm-associated infectious diseases.


Subject(s)
Biofilms , Pseudomonas aeruginosa , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Polymers/chemistry
5.
J Mater Chem B ; 9(43): 8951-8961, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34606554

ABSTRACT

Bacteria can evade the immune system once they are engulfed by phagocytic host cells. This protects them against the bactericidal action of antibiotics and allows the infection to remain latent or to recur. Reactive oxygen species (ROS)-related stress has been implicated in various pathological conditions such as inflammatory diseases involving infections of host cells and can serve as a useful trigger for intracellular controlled drug delivery. We herein report on a fluorescent ROS-sensitive intracellular antibiotic delivery nanoparticle for encapsulation of rifampin (RIF) based on the principles of Förster Resonance Energy Transfer (FRET) that is capable of ratiometrically sensing H2O2 levels and monitoring the drug release process. The fluorescent micelles (MFs) are formed through the self-assembly of amphiphilic diblock copolymers consisting of a poly(ethylene glycol) (PEG) segment and a fluorescent oxidation-responsive hydrophobic phenylboronic pinacol ester (PBA) block. Specifically, MFs could encapsulate the model antibiotic RIF (MF/RIF) and ROS-triggered controlled release of RIF within infected macrophages (where ROS levels are elevated) improved the elimination of intracellular bacteria compared to MF or RIF alone. This antibiotic delivery system may be especially effective at fighting intracellular pathogens that have managed to evade the immune system and could minimize exposure of normal cells and tissues to high drug concentrations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Delivery Systems , Fluorescent Dyes/pharmacology , Reactive Oxygen Species/metabolism , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Micelles , Microbial Sensitivity Tests , Molecular Structure , Particle Size , Staphylococcal Infections/metabolism , Surface Properties
6.
Acta Biomater ; 126: 384-393, 2021 05.
Article in English | MEDLINE | ID: mdl-33705987

ABSTRACT

Multidrug resistant (MDR) Gram-negative bacteria are an urgent global health threat. We report on the design and evaluation of a xenosiderophore-conjugated cationic random copolymer (pGQ-DG) which exhibits selective antibacterial activity against Pseudomonas aeruginosa (P. aeruginosa) by targeting select outer membrane (OM) receptors for scavenging xenosiderophores such as deferoxamine (DFO), while possessing favorable cytocompatibility and exhibiting low hemolysis, to enhance and safely damage the bacterial OM. pGQ-DG demonstrated synergistic properties in combination with vancomycin (VAN) when evaluated in vitro against P. aeruginosa. In addition, pGQ-DG plus VAN cleared the P. aeruginosa infection and efficiently accelerated healing in a murine wound healing model as effectively as colistin, suggesting that this strategy could serve as an alternative to colistin against MDR bacteria. STATEMENT OF SIGNIFICANCE: P. aeruginosa exhibits intrinsic antibiotic resistance due to limited permeability of its outer membrane (OM). A triple combination antipseudomonal approach was investigated by 1) selectively targeting P. aeruginosa through the complex DFO:gallium, 2) disrupting the OM through a cationic random copolymer, and 3) enhancing bacteria sensitivity to VAN as a result of the OM disruption. Synthesis and characterization of the lead polymer pGQ-DG, mechanism of action, antimicrobial activity, and biocompatibility were investigated in vitro and in vivo. Overall pGQ-DG plus VAN cleared the P. aeruginosa infection and accelerated wound healing in mice as effectively as colistin, suggesting that this strategy could serve as an alternative to colistin against multidrug resistant P. aeruginosa.


Subject(s)
Gallium , Pseudomonas aeruginosa , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacology , Deferoxamine/pharmacology , Mice , Microbial Sensitivity Tests , Polymers , Wound Healing
7.
ACS Nano ; 15(1): 419-433, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33378155

ABSTRACT

Chronic blood transfusions are used to alleviate anemic symptoms in thalassemia and sickle cell anemia patients but can eventually result in iron overload (IO) and subsequently lead to severe oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat transfusional IO, but the use of the iron chelator is hindered by nonspecific toxicity and poor pharmacokinetic (PK) properties in humans, resulting in the need to administer the drug via long-term infusion regimens that can often lead to poor patient compliance. Herein, a nanochelator system that uses the characteristic IO physiological environment to dissociate was prepared through the incorporation of DFO and reactive oxygen species (ROS)-sensitive thioketal groups into an α-cyclodextrin-based polyrotaxane platform (rPR-DFO). ROS-induced dissociation of this nanochelator (ca. 10 nm) into constructs averaging 2 nm in diameter significantly increased urine and fecal elimination of excess iron in vivo. In addition to significantly improved PK properties, rPR-DFO was well-tolerated in mice and no adverse side effects were noted in single high dose or multiple dose acute toxicity studies. The overall features of rPR-DFO as a promising system for iron chelation therapy can be attributed to a combination of the nanochelator's improved PK, favorable distribution to the liver, and ROS-induced dissociation properties into constructs <6 nm for faster renal elimination. This ROS-responsive nanochelator design may serve as a promising alternative for safely prolonging the circulation of DFO and more rapidly eliminating iron chelates from the body in iron chelation therapy regimens requiring repeated dosing of nanochelators.


Subject(s)
Iron Overload , Rotaxanes , Animals , Deferoxamine , Dissociative Disorders , Humans , Iron , Iron Chelating Agents , Iron Overload/drug therapy , Liver , Mice , Reactive Oxygen Species
8.
Eur J Med Chem ; 69: 670-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24095759

ABSTRACT

RhoB is expressed during tumor cell proliferation, survival, invasion, and metastasis. In malignant progression, the expression levels of RhoB are commonly attenuated. RhoB is known to be linked to the regulation of the PI3K/Akt survival pathways. Based on aliphatic amido-quaternary ammonium salts that induce apoptosis via up-regulation of RhoB, we synthesized novel aliphatic sulfonamido-quaternary ammonium salts. These new synthetic compounds were evaluated for their biological activities using an in vitro RhoB promoter assay in HeLa cells, and in a growth inhibition assay using human cancer cell lines including PC-3, NUGC-3, MDA-MB-231, ACHN, HCT-15, and NCI-H23. Compound 5b (ethyl-dimethyl-{3-[methyl-(tetradecane-1-sulfonyl)-amino]-propyl}-ammonium; iodide) was the most promising anticancer agent in the series, based upon the potency of growth inhibition and RhoB promotion. These new aliphatic sulfonamido-quaternary ammonium salts could be a valuable series for development of new anticancer chemotherapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Quaternary Ammonium Compounds/pharmacology , Sulfonamides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Molecular Structure , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Salts/chemical synthesis , Salts/chemistry , Salts/pharmacology , Structure-Activity Relationship , rhoB GTP-Binding Protein/antagonists & inhibitors , rhoB GTP-Binding Protein/biosynthesis , rhoB GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...