Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 56(46): 6237-6240, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32373820

ABSTRACT

A fundamental challenge in nanomaterial science is to facilely fabricate nonspherical polymersomes. Here, several kinds of novel tubular polymersomes were fabricated via self-assembly of amphiphilic azobenzene-containing block copolymers. Besides, their shape could be tuned by multiple approaches including changes in the chemical structure, self-assembly conditions and external stimuli.

2.
ACS Appl Mater Interfaces ; 11(47): 44642-44651, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31684724

ABSTRACT

Electronic skins are developed for applications such as biomedical sensors, robotic prosthetics, and human-machine interactions, which raise the interest in composite materials that possess both flexibility and sensing properties. Polypyrrole-coated cellulose nanocrystals and cellulose nanofibers were prepared using iron(III) chloride (FeCl3) oxidant, which were used to reinforce polyvinyl alcohol (PVA). The combination of weak H-bonds and iron coordination bonds and the synergistic effect of these components yielded self-healing nanocomposite films with robust mechanical strength (409% increase compared to pure PVA and high toughness up to 407.1%) and excellent adhesion (9670 times greater than its own weight) to various substrates in air and water. When damaged, the nanocomposite films displayed good mechanical (72.0-76.3%) and conductive (54.9-91.2%) recovery after a healing time of 30 min. More importantly, the flexible nanocomposites possessed high strain sensitivity under subtle strains (<48.5%) with a gauge factor (GF) of 2.52, which was relatively larger than the GF of ionic hydrogel-based skin sensors. These nanocomposite films possessed superior sensing performance for real-time monitoring of large and subtle human motions (finger bending motions, swallowing, and wrist pulse); thus, they have great potentials in health monitoring, smart flexible skin sensors. and wearable electronic devices.


Subject(s)
Biocompatible Materials/chemistry , Bionics/instrumentation , Cellulose/chemistry , Nanocomposites/chemistry , Electric Conductivity , Humans , Hydrogels/chemistry , Materials Testing , Polymers/chemistry , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...