Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Colloid Interface Sci ; 665: 365-375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38537585

ABSTRACT

Exploring highly selective and stable electrocatalysts is of great significance for the electrochemical conversion of CO2 into fuel. Herein, a three-dimensional (3D) nanostructure catalyst was developed by doping Pb single-atom (PbSA) in-situ on carbon paper (PbSA100-Cu/CP) through a low-energy and economical method. The designed catalyst exhibited abundant active sites and was beneficial to CO2 adsorption, activation, and subsequent conversion to fuel. Interestingly, PbSA100-Cu/CP showed a prominent Faraday efficiency (FE) of 97 % at -0.9 V versus reversible hydrogen electrode (vs. RHE) and a high partial current density of 27.9 mA·cm-2 for formate. Also, the catalyst remained significantly stable for 60 h during the durability test. The reaction mechanism was investigated by density functional theory (DFT), demonstrating that the doping PbSA induced the electrons redistribution, promoted the formate generation, reduced the rate-determining step (RDS) energy barrier, and inhibited the hydrogen evolution reaction. The study aims to provide a new strategy for developing of single-atom catalysts with high selectivity and stability, which will help reduce environmental pressure and alleviate energy problems.

2.
Materials (Basel) ; 17(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38399108

ABSTRACT

In this paper, the strength development of a pure steel slag (SS) system with various concentrations of N,N,N',N'-Tetrakis-(2-hydroxyethyl) ethylenediamine (THEED) was investigated. The hydration kinetics, pore structure and microstructure of SS pastes with and without THEED were characterized to underscore the working mechanism of THEED. Results show that THEED additions significantly increase the 3, 7 and 28 days compressive strength of hardened SS pastes. The enhancement effect increases with the dosage of THEED. At a concentration of 2000 ppm, THEED increased the compressive strength by 733%, 665%, and 545% at 3, 7 and 28 days, respectively. It is confirmed that THEED additions improve the hydration degree of SS by accelerating hydration of the aluminum phase (C3A, PDF-38-1429; C12A7, PDF-48-1882) and C2F,( PDF 38-0408) to generate Mc (PDF-41-0219) and Pa (PDF-30-0222) in the presence of CaCO3. Also, the hydration degree of silicates is increased by THEED. In this way, THEED additions refine the pore structure of hardened SS paste by increasing the pore volume with a diameter below 300 nm to achieve enhancement. The chelating effect of THEED results in promoting dissolution of SS, which provides the driving force for accelerating SS hydration.

3.
Environ Sci Pollut Res Int ; 30(51): 111221-111230, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37807028

ABSTRACT

Collaborative disposal of sludge has been applied extensively in cement industry kilns, but the influence of organic components in sludge on the selective non-catalytic reduction (SNCR) denitrification is still in highly demanding. This paper focuses the influence of ethanol, n-octane, benzene, and acetone on the SNCR denitrification, and the influence of ethanol are analyzed on SNCR denitrification under different flue gas condition. The result showed that the presence of organic components reduces the reaction temperature of SNCR. When the temperature of SNCR reaction is at 750 ~ 800 ℃, the denitrification rate of four organic components is ethanol > benzene > n-octane > acetone. The optimum denitrification rate on SNCR can reach as high as 90.377% when the reaction condition is the NH3/NO is 1; the ethanol concentration is 1000 ppm; O2 concentration is 2%; and temperature is 750 ℃. The presence of carbon dioxide inhibits the denitrification reaction. With the increase of temperature, the influence of SO2 on the denitrification reaction first increases and then decreases. In this paper, the influence of organic components in sludge on SNCR denitrification will be analyzed, which provides a theoretical basis for the selection of sludge dosing method for cement kiln collaborative disposal.


Subject(s)
Denitrification , Sewage , Acetone , Benzene , Ethanol
4.
Materials (Basel) ; 16(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37687552

ABSTRACT

NOx emission from the cement industry have received much attention. In order to reduce the NOx emission in cement kilns, nickel slag was used to prepare the non-ammonia denitrification material, and a denitrification mechanism was proposed in this study. The results showed that the denitrification material prepared at pH 7 exhibited the best denitrification performance. At low temperature, the highest denitrification performance was achieved between 200 and 300 °C with a NO decomposition rate of approximately 40%. Then, the NO decomposition rate increased as the temperature increased, reaching over 95% above 700 °C. The physicochemical characteristics showed that the material had the highest specific surface area and the highest relative Fe content, which benefited the denitrification performance. The divalent iron of the denitrification material was considered the active site for the reaction, and trivalent iron was not conducive to denitrification performance at a low temperature range. After the denitrification reaction, the Fe3+/Fe2+ increased from 0.89 to 1.31. The proposed denitrification mechanism was the redox process between divalent iron and trivalent iron. This study not only recycles industrial waste to reduce solid waste pollution but also efficiently removes nitrogen oxides from cement kilns without ammonia.

5.
Environ Sci Pollut Res Int ; 30(32): 79106-79119, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37284958

ABSTRACT

In this study, two types of liquid alkali-free accelerators were prepared by aluminum sulfate (AF1) and aluminum mud wastes (AF2), and the life cycle assessment (LCA) in the preparation of AF1 and AF2 was compared. The LCA was considered from cradle to gate including raw materials used, transportation, and accelerator preparation based on the method ReCiPe2016. The results indicated that AF1 had a higher environmental impact in all midpoint impact categories and endpoint indicators than that of AF2, and AF2 reduced 43.59% emission of CO2, 59.09% emission of SO2, 71% consumption of mineral resources, and 46.67% consumption of fossil resources than that of AF1 respectively. As an environment-friendly accelerator, AF2 had a better application performance than traditional accelerator AF1. When the dosage of accelerators was 7%, the initial setting times of cement pastes containing AF1 and AF2 were 4 min 57 s and 4 min 04 s respectively, the final setting times of cement pastes containing AF1 and AF2 were 11 min 49 s and 9 min 53 s respectively, and the compressive strengths at 1 d of mortars containing AF1 and AF2 were 7.35 MPa and 8.33 MPa respectively. This study aims to provide technical feasibility and environmental impact assessment for exploring new avenues of preparing environment-friendly liquid alkali-free accelerators with aluminum mud solid wastes. It has great potential in reducing carbon and pollution emissions and has a greater competitive advantage due to great application performance.


Subject(s)
Aluminum , Environmental Pollution , Animals , Life Cycle Stages
6.
Materials (Basel) ; 16(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36837206

ABSTRACT

The combined utilization of mineral accelerators and nano-seeding materials is a novel method to promote the early strength of cement-based materials. In this paper, the effects of nano-C-S-H seed (NCS) on the early compressive strength of the Portland cement (PC)- calcium sulfoaluminate cement (CSA) binder were investigated. The results showed that NCS and CSA synergistically contributed to the early strength of PC. In detail, a 326.3% increase in the 10 h compressive strength of PC paste was obtained through the addition of NCS (2 wt%) and CSA (5%) in common. This was higher than the sum of the increases observed with the single additions of CSA (157.9%) or NCS (87.6%), with the same above dosage, in PC. Meanwhile, the early strength enhancement effects of NCS and CSA, when used together in PC, lasted longer than the effects of either used alone. Moreover, the synergetic effect mechanism was analyzed by isothermal calorimeter, QXRD, TGA, MIP, and SEM techniques. The calorimetry, XRD, and TGA results demonstrated that the synergistic mechanism was associated with the synergistic promotion effects of CSA and NCS on the hydrates. The fast hydration of CSA produced large amounts of ettringite and also consumed partial free water to promote the performance of the seeding effect of NCS which, simultaneously, further accelerated the precipitation of C-S-H gel and CH. The high alkie environment was also beneficial for the continuous generation of ettringite. In addition, the results of MIP and SEM measurements showed that the micro-filling effect of NCS significantly optimized the pore structure of a PC-CSA blend-hardened paste. Thus, the synergistic strength enhancement effects of CSA and NCS on PC were attributed to the matching of the promotion of hydration generation and the optimization of pore structures in hardening cement paste. The results of this article provide a new approach to achieving the rapid development of the early strength of cementitious materials, with potential applications in precast concrete and low-temperature construction.

7.
Polymers (Basel) ; 15(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36679307

ABSTRACT

Concrete cracking has a negative impact on the durability of the structure. Pre-implanting microcapsules containing healing agents into the concrete are expected to induce the cracks to self-heal. However, the self-healing effect can potentially be influenced by several environmental conditions, thus limiting its applications. To address these challenges, we developed a new type of water-absorbing microcapsules, using calcium alginate hydrogel as the wall material and an adhesive epoxy polymer as the core material, to improve the self-healing adaptability in complex and changing environments. We explored the healing properties and mechanism of cementitious materials containing microcapsules under various environmental conditions. The experimental results showed that the water-absorbent microcapsules exhibit multiple self-healing effects under different external conditions: (1) in an anhydrous environment, fissures prompted the activation of microcapsules, and the epoxy polymer flowed out to seal the cracks. (2) When exposed to water, the microcapsules inflated to form a seal around the fissures. (3) The microcapsules facilitated the autogenous healing of cracks in the cementitious material when wet and dry conditions were alternated. The three self-healing mechanisms worked synergistically and contributed to the effective restoration of the impermeability and strength of concrete under different environments. Particularly, the recovery of compressive strength and impermeability exceeded 100% when the microcapsule content was 4% and the pre-pressure was 40% of fmax.

8.
Environ Sci Pollut Res Int ; 30(6): 14959-14974, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36161572

ABSTRACT

Contamination of leafy vegetables grown in heavy metal(loid)-polluted mining areas pose serious health risks. This study aimed to explore the heavy metal(loid) contamination of leafy vegetables near two mining areas, by collecting samples from 14 different leafy vegetable species in Yunnan Province, China. The lead (Pb), cadmium (Cd), arsenic (As), and copper (Cu) contents of the samples were determined, and risks to human health were calculated using the hazard quotient and hazard index (HI). Moreover, Malabar spinach was identified as a leafy vegetable that exhibits low accumulation of heavy metal(loid)s. The accumulation capacity of different Malabar spinach varieties was verified, and a Cd soil safety threshold was determined using a pot experiment. Overall, Pb and Cd were the main soil and vegetable contaminants found in both study sites. The HI values for all leafy vegetables, apart from Malabar spinach, were greater than 1, indicating the presence of risks to human health; moreover, the health risks were greater for children than adults. The Malabar spinach pot experiment results showed that only some Cd forms exceeded China's maximum permissible standards. Furthermore, Malabar spinach varieties A (instant Malabar spinach), C (extra-large leaf green vine Malabar spinach), and F (large leaf Malabar spinach) displayed the lowest Cd accumulation. We calculated Cd total and bioavailable soil safety thresholds of 4.75 and 0.77 mg kg-1, respectively. However, further research is required to validate soil heavy metal safety thresholds for different vegetables. Ultimately, the heavy metal(loid) contamination of leafy vegetables described here was more serious than anticipated. Finally, the results of this study can inform residents living near these mining areas of a low-risk leafy vegetable, which will reduce the harm caused by heavy metal(loid) contamination in the area.


Subject(s)
Metals, Heavy , Soil Pollutants , Child , Adult , Humans , Cadmium/analysis , Vegetables , Spinacia oleracea , Bioaccumulation , Lead , Food Contamination/analysis , Soil Pollutants/analysis , China , Metals, Heavy/analysis , Soil , Plant Leaves/chemistry , Risk Assessment , Environmental Monitoring/methods
9.
J Environ Manage ; 326(Pt A): 116677, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36356537

ABSTRACT

A field survey and pot experiment were carried out to screen tolerant plants growing in cadmium (Cd)-polluted mining areas which were co-polluted with acid in soil, and the related physiological and biochemical mechanisms were also analyzed. Thirty-seven species of wild plants and their corresponding soil were collected from a farmland around the mining areas. Ageratum (Ageratum conyzoides L.) with strong Cd-accumulative ability was selected, and its tolerance experiment for acid and Cd with different levels were carried out separately or orthogonally, respectively. Furthermore, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and the contents of malondialdehyde (MDA), photosynthetic pigments, soluble sugar and proline in its leaves were determined. The results showed that the Cd accumulation in ageratum and sticktight (Bidens pilosa L.) was relatively high, but the latter has been well documented, so we focused on ageratum in the present work. In pot experiment, ageratum grew normally at 100 mg kg-1 Cd in soil, and the Cd concentrations in its roots, stems and leaves were 75.37 ± 7.37, 31.01 ± 3.76 and 53.92 ± 10.05 mg kg-1, respectively. In the case of acid tolerance experiment, all plant individuals of ageratum grew normally when soil pH was over 3.5. In the orthogonal experiment, the Cd accumulation in this plant increased with the decrease of soil pH under the same Cd treatment. Under strong acid conditions, the activity of SOD in leaves of ageratum was increased significantly. When the Cd concentration was 10 mg kg-1 and the soil pH was 5.5 or 3.5, the activities of POD and CAT were significantly increased. In addition, based on stepwise regression analysis, the leaf Cd concentration was significantly positive correlated with the activities of SOD and POD in leaves of ageratum. Therefore, ageratum not only had a strong tolerance for Cd and acid pollution in soil, but also had a strong ability to accumulate Cd. As a common plant in the mining area, it has a great potential for the phytoremediation of Cd and acid co-contaminated soil.


Subject(s)
Ageratum , Soil Pollutants , Cadmium/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Soil/chemistry , Plant Roots/chemistry , Superoxide Dismutase , Antioxidants/analysis
10.
Heliyon ; 8(12): e12175, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36561702

ABSTRACT

Flame retardant modification of leaf fibers was carried out to solve the technical problem of poor fire resistance of plant fibers and improve the utilization rate of urban fallen leaves in building materials. The modification scheme adopts three flame retardants, i.e., ammonium polyphosphate (APP), magnesium hydroxide (MH), and aluminum hydroxide (ATH), and two covering layers, i.e., pure acrylic polymer lotion and water glass (Na2O · nSiO2) solution. The modified leaf fiber's combustion behavior and pyrolysis properties were tested and analyzed. The physical and mechanical characteristics, as well as the thermal insulation qualities, of leaf fiber cement-based composites (LFCC) were studied at high temperatures. The findings revealed that the three flame retardants had an effect on the chemical structure of leaf fibers. In comparison to leaf fibers without flame-retardant modification, flame-retardant-modified leaf fibers have a much greater thermal stability. and its LOI is greater than 27.0%, which is a fire-retardant material. Except for the sample with water glass as the modified cover layer, at high temperatures, the composite flame-retardant fiber LFCC's mass-loss rate is lower compared with fibers without flame-retardant modification or fibers modified with only one kind of flame-retardant. In the composite flame-retardant modified fiber LFCC, the samples with better strength at high temperature are those with ATH replacing 30% and 50% MH. The thermal conductivity of LFCC is negatively correlated with the range of temperature change.

11.
Materials (Basel) ; 15(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36234341

ABSTRACT

Reducing or eliminating cracks caused by shrinkage of cementitious materials remains a daunting challenge for construction engineers. Drying shrinkage and autogenous shrinkage are the main shrinkage types in the service process of cement-based materials, which have a great impact on engineering applications. If cracks in concrete generate by drying or autogenous shrinkage, the mechanical properties, water resistance and durability of concrete will be also affected. It is an effective method to use chemical admixtures to inhibit the shrinkage of cement-based materials. Polycarboxylate plasticizer (PCE) is an important chemical admixture in cement-based materials and is widely used in practical engineering. It can bring great value by reducing the shrinkage effect through molecular design. Through our innovative design, a series of shrinkage-reducing polycarboxylate superplasticizers (SRPs) were synthesized, their molecular structures were confirmed by Fourier transform infrared spectroscopy (FTIR) and their molecular properties were determined by gel permeation chromatography (GPC). Furthermore, the shrinkage performances at different ages of the mortars containing the synthesized SRPs with different structures were systematically evaluated. The results showed that compared with the blank sample, the dry shrinkage rate and free shrinkage rate of the mortars containing SRP decreased by over 20% and 15%, respectively. Additionally, the shrinkage rates of the mortars containing SRP were significantly lower than that of the mortar containing conventional PCE, and moreover, the water-reducing performance was improved compared to conventional PCE. Based on the experimental results of surface tension and evaporation rate of different SRP solutions, the mechanism of the shrinkage-reducing effect was probed, as expected to provide guidance for the design and development of new shrinkage-reducing admixtures.

12.
Membranes (Basel) ; 12(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35629778

ABSTRACT

As a kind of volatile organic compound (VOC), methyl tert-butyl ether (MTBE) is hazardous to human health and destructive to the environment if not handled properly. MTBE should be removed before the release of wastewater. The present work supported the methyl-modified silica layer (MSL) on porous α-Al2O3 ceramic membranes with methyltrimethoxysilane (MTMS) as a precursor and pre-synthesized mesoporous silica microspheres as dopants by the sol-gel reaction and dip-coating method. MTMS is an environmentally friendly agent compared to fluorinated alkylsilane. The MSL-supported Al2O3 ceramic membranes were used for MTBE/water separation by pervaporation. The NMR spectra revealed that MTMS evolves gradually from an oligomer to a highly cross-linked methyl-modified silica species. Methyl-modified silica species and pre-synthesized mesoporous silica microspheres combine into hydrophobic mesoporous MSL. MSL makes the α-Al2O3 ceramic membranes transfer from amphiphilic to hydrophobic and oleophilic. The MSL-supported α-Al2O3 ceramic membranes (MSL-10) exhibit an MTBE/water separation factor of 27.1 and a total flux of 0.448 kg m-2 h-1, which are considerably higher than those of previously reported membranes that are modified by other alkylsilanes via the post-grafting method. The mesopores within the MSL provide a pathway for the transport of MTBE molecules across the membranes. The presence of methyl groups on the external and inner surface is responsible for the favorable separation performance and the outstanding long-term stability of the MSL-supported porous α-Al2O3 ceramic membranes.

13.
Environ Toxicol ; 37(6): 1483-1494, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35343646

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is a common hypotype of breast cancer. Circular RNAs (circRNAs) are burgeoning serve as vital controllers in numerous tumors. Nevertheless, the expression and regulatory mode of circRNAs in TNBC are still indistinct. This paper aimed to reveal the function and molecular mechanism of circular RNA dehydrodolichyl diphosphate synthase (circDHDDS) in TNBC. METHODS: The contents of circDHDDS, DHDDS mRNA, microRNA-362-3p (miR-362-3p) and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay were executed to assess cell proliferation. The flow cytometry assay was utilized to detect cell apoptosis. The transwell assay and tube formation assay were applied to measure cell migration, invasion and angiogenesis. The targeted relationships of miR-362-3p and circDHDDS or DDX5 were forecasted and detected by dual-luciferase reporter assay. The in vivo test was implemented to confirm the effect of circDHDDS. RESULTS: The contents of circDHDDS and DDX5 were increased, and miR-362-3p level was decreased in TNBC. CircDHDDS deficiency reserved cell proliferation, migration, invasion and angiogenesis, while facilitated cell apoptosis in TNBC cells. Furthermore, miR-362-3p was validated to exert a tumor repressive effect in TNBC cells by suppressing DDX5. Moreover, DDX5 could regulate the development of TNBC. The experimental data exposed that levels of miR-362-3p presented noteworthy negative correlation with circDHDDS and DDX5, while circDHDDS and DDX5 exhibited significant positive correlation. In mechanism, circDHDDS bound to miR-362-3p to modulate DDX5 expression. In addition, circDHDDS knock-down also attenuated tumor growth. CONCLUSION: CircDHDDS expedited TNBC by swelling DDX5 via adapting miR-362-3p.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Alkyl and Aryl Transferases , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
14.
Materials (Basel) ; 15(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35160793

ABSTRACT

Self-healing cementitious materials are a promising means for ensuring sustainable concrete infrastructure and promoting long-term service lives. To obtain microcapsules that are versatile in varying environments, in this study, absorbing microcapsules with calcium alginate as the shell and epoxy resin as the core were prepared. The absorbing microcapsules exhibit self-healing and can reduce the shrinkage of cementitious materials. Volume changes of the microcapsules in the hardened paste with increasing hydration age were observed using three-dimensional X-ray computed tomography. In the hardened cement paste with a water-cement ratio of 0.29, the absorption of the microcapsules lasted for several days, and the release of water lasted for 28 days. The absorption of microcapsules affected the fluidity of cement paste, and it was significantly weakened and delayed due to the lower absorption rate. The addition of absorbing microcapsules significantly reduced the autogenous and drying shrinkage of mortars. For microcapsules with a core content of 55% added at 3.5% of cement weight, autogenous shrinkage was almost eliminated. Most importantly, the addition of absorbing microcapsules could achieve a certain degree of recovery of compressive strength as well as satisfactory recovery of impermeability in dry and wet environments.

15.
J Mol Model ; 28(1): 29, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34989885

ABSTRACT

The application of cement-based materials in engineering requires the understanding of their characteristics and subsequent deformation and fracture process of C-S-H gel in service. In this work, three types of amine molecules including tetraethylenepentamine (TEPA), polyacrylamide (PAM), and triethanolamine (TEA) were intercalated into C-S-H gel in an unsaturated status successfully. Systematical analysis was performed on the structures and properties for both C-S-H gel and corresponding amine molecules/C-S-H gel. It was found that the unsaturated intercalation of amine molecules into C-S-H gel plays a key role in the geometry and therein density of nanocomposites. Subsequently, radial distribution function (RDF), time-correlated function (TCF), and mean square displacement (MSD) were applied to characterize the structure and dynamic information of the as-generated nanocomposites, demonstrating the occurrence of interaction between amine molecules with Ca-Si layer and acceleration of water diffusion by unsaturated intercalation of amine molecules into the interlayer region in C-S-H gel. Finally, the deformation and fracture process of C-S-H gel and amine molecules/C-S-H gel under uniaxial tensile loads were given by molecular dynamics simulation. It was indicated that the tangent modulus of nanocomposites demonstrates a strain-softening nature, indicating a visco-elastic behavior. The breakage of Ca-O bonds and hydrogen bonds dominates the fracture of C-S-H gel. Weak interaction for TEPA/C-S-H gel or TEA/C-S-H gel leads to a decreased tensile strength. Local stress concentration in other interlayer region governs the deformation and fracture process in spite of the formation of strong interaction between double bonded polar oxygen atoms in PAM molecules and Ca atoms in C-S-H gel.

16.
Polymers (Basel) ; 13(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34685273

ABSTRACT

In this work, a novel intumescent flame retardant (IFR) system was fabricated by the introduction of chitin as a green charring agent, ammonium polyphosphate (APP) as the acid source, and melamine (MEL) as the gas source. The obtained chitin-based IFR was then incorporated into a polylactic acid (PLA) matrix using melt compounding. The fire resistance of PLA/chitin composites was investigated via the limiting oxygen index (LOI), UL-94 vertical burning, and cone calorimeter (CONE) tests. The results demonstrated that the combination of 10%APP, 5%chitin and 5%MEL could result in a 26.0% LOI, a V-0 rating after UL and a 51.2% reduction in the peak heat release rate during the CONE test. Based on the mechanism analysis from both the morphology and the chemical structure of the char, it was suggested that chitin was a promising candidate as a charring agent for chitin reacted with APP and MEL with the formation of an intumescent layer on the surface.

17.
Polymers (Basel) ; 13(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34577970

ABSTRACT

A series of novel comb-like poly(butyl acrylate)-g-poly(dimethylaminoethyl methacrylate) (PBA-g-PDMAEMA) with different side chain lengths were designed and successfully synthesized by the "first main chain then side chain" method. Infrared Spectroscopy (IR), 1H Nuclear Magnetic Resonance (1H NMR), and gel permeation chromatography (GPC) were used for structural confirmation and molecular weight characterization. This polymer exhibited responsive behavior from hydrophilicity to hydrophobicity under the alkaline environment of cement-based materials, with the contact angle of 105.6°, a decreased evaporation rate, and a hydrophile-lipophile balance (HLB) value. A significant internal hydrophobic effect on cement mortar was shown in the water absorption rate, which decreased by 75.2%, and a dry shrinkage-reducing rate of more than 30%. Furthermore, this polymer can effectively slow the exothermic rate, reduce the heat release, and delay the exothermic peak of cement hydration. It was interesting that these properties showed a direct correlation with the side chain length of the comb polymer. The aims of this study are to provide a new avenue to synthesize polymers with the spontaneous hydrophilicity-hydrophobicity transition in the cement system, achieving excellent internal hydrophobicity of cement-based materials, and to offer a promising alternative to resist external erosion for improving the durability and service life of cement-based materials.

18.
J Hazard Mater ; 416: 126117, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492912

ABSTRACT

Mn-based catalysts are expected to be applied for removing NOx due to its excellent low-temperature activity. However, the practical use of these catalysts is extremely restricted with the co-poisoning of alkali metal and SO2 in the flue gas. Here the MnO2/TiO2 catalyst was employed to elucidate the co-poisoning mechanisms of K and SO2 for the low temperature selective catalytic reduction (SCR) of NO. The physicochemical properties of catalysts under different toxicity conditions were studied by experiments. The adsorption of NH3, SO2, NO, and K on active component (MnO2) and support (TiO2) was studied by density functional theory. This work unravels a promotion effect of support on the alkali and sulfur resistance. The SO2&K co-poisoning catalyst had higher SCR activity than the SO2-poisoned and K-poisoned catalyst alone. For a single toxic condition: (1) SO2 was preferentially bonded with the terminated O site of MnO2 inhibiting the dehydrogenation of NH3 and redox cycle. (2) The presence of Lewis base (K atom) on the catalyst decreased the binding energy of a Lewis base (NH3) and hindered the adsorption of NH3. For the synergistic effect of K and SO2, the majority of K adsorbed on the support (TiO2) lead to increase alkalinity, which could promote the adsorption of SO2 on the TiO2 and reduce the toxicity of the active component (MnO2).


Subject(s)
Ammonia , Manganese Compounds , Catalysis , Oxidation-Reduction , Oxides , Titanium
19.
Ecotoxicol Environ Saf ; 221: 112415, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34171691

ABSTRACT

In order to understand the mechanisms of arsenic (As) accumulation and detoxification in aquatic plants exposed to different As species, a hydroponic experiment was conducted and the three aquatic plants (Hydrilla verticillata, Pistia stratiotes and Eichhornia crassipes) were exposed to different concentrations of As(III), As(V) and dimethylarsinate (DMA) for 10 days. The biomass, the surface As adsorption and total As adsorption of three plants were determined. Furthermore, As speciation in the culture solution and plant body, as well as the arsenate reductase (AR) activities of roots and shoots, were also analyzed. The results showed that the surface As adsorption of plants was far less than total As absorption. Compared to As(V), the plants showed a lower DMA accumulation. P. stratiotes showed the highest accumulation of inorganic arsenic but E. crassipes showed the lowest at the same As treatment. E. crassipes showed a strong ability to accumulate DMA. Results from As speciation analysis in culture solution showed that As(III) was transformed to As(V) in all As(III) treatments, and the oxidation rates followed as the sequence of H. verticillata>P. stratiotes>E. crassipes>no plant. As(III) was the predominant species in both roots (39.4-88.3%) and shoots (39-86%) of As(III)-exposed plants. As(V) and As(III) were the predominant species in roots (37-94%) and shoots (31.1-85.6%) in As(V)-exposed plants, respectively. DMA was the predominant species in both roots (23.46-100%) and shoots (72.6-100%) in DMA-exposed plants. The As(III) contents and AR activities in the roots of P. stratiotes and in the shoots of H. verticillata were significantly increased when exposed to 1 mg·L-1 or 3 mg·L-1 As(V). Therefore, As accumulation mainly occurred via biological uptake rather than physicochemical adsorption, and AR played an important role in As detoxification in aquatic plants. In the case of As(V)-exposed plants, their As tolerance was attributed to the increase of AR activities.


Subject(s)
Araceae , Arsenate Reductases/metabolism , Arsenic , Cacodylic Acid , Eichhornia , Hydrocharitaceae , Plant Proteins/metabolism , Water Pollutants, Chemical , Adsorption , Araceae/chemistry , Araceae/metabolism , Arsenic/chemistry , Arsenic/metabolism , Cacodylic Acid/chemistry , Cacodylic Acid/metabolism , Eichhornia/chemistry , Eichhornia/metabolism , Hydrocharitaceae/chemistry , Hydrocharitaceae/metabolism , Hydroponics , Plant Roots/chemistry , Plant Roots/metabolism , Plant Shoots/chemistry , Plant Shoots/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
20.
Chemosphere ; 281: 130955, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34049084

ABSTRACT

With the rapid development of the construction industry, it is necessary to synthesize environment-friendly functional polymers, especially when developing "green" construction industry types. Herein a novel solid-state polycarboxylate superplasticizer (PCE) with low energy-consumption was designed and synthesized. In industrial application, solid-state PCE has exhibited better cement paste fluidity and concrete slump compared to liquid-state PCE. A life cycle assessment (LCA) of the PCE synthesis, the packaging materials used, and the transportation of the PCE were conducted based on the ReCiPe method. The results indicated that liquid-state PCE has a far greater environmental impact at >60% than solid-state PCE, which is less significant at <40%. The inventory data that are associated with the production of the new polymer are disclosed for the first time to enrich the related database in this field. This study demonstrates the optimization of the state and synthesis technique of a functional polymer, improving the performance and lowering the environmental impacts involved in producing the polymer, while reducing the risks to human health and protecting the ecosystem at the same time.


Subject(s)
Construction Industry , Ecosystem , Animals , Construction Materials , Environment , Humans , Life Cycle Stages
SELECTION OF CITATIONS
SEARCH DETAIL
...