Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 23(6): 652-657, 2021.
Article in English | MEDLINE | ID: mdl-33197328

ABSTRACT

The study aimed at accessing the effects of mowing on the growth and cadmium (Cd) accumulation of the first post-grafting generation of potential Cd-hyperaccumulator plant Solanum photeinocarpum through the pot and plot experiments. Four grafting treatments were employed such as ungrafted (UG), self-rooted grafting by the same S. photeinocarpum seedling (SG), self-rooted grafting by two different development stages of S. photeinocarpum seedlings (DG), and grafting on the rootstock of wild potato (PG). The biomass, Cd content, and Cd extraction amount of S. photeinocarpum shoots significantly decreased with the increase of mowing times in the pot and plot experiments. The order of the grafting on the biomass, Cd content, and Cd extraction amountof in the first, second, third mowing shoots were PG > DG > SG > UG. For the Cd extraction amountof total moving shoots, SG, DG, and PG increased by 20.42%, 35.54%, and 52.94%, respectively, in the pot experiment, and increased by 11.56%, 26.28%, and 44.90%, respectively, in the plot experiment, compared with the UG. Therefore, mowing provides an insight into the phytoremediation ability of S. photeinocarpum to Cd.


Subject(s)
Soil Pollutants , Solanum nigrum , Solanum , Biodegradation, Environmental , Biomass , Cadmium/analysis , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
2.
Physiol Mol Biol Plants ; 26(7): 1375-1383, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32647455

ABSTRACT

A pot experiment was conducted to study the selenium (Se) accumulation characteristics and the tolerance of Cyphomandra betacea (Solanum betaceum) seedlings under different soil Se concentrations. The 5 mg/kg soil Se concentration increased the C. betacea seedling biomass and photosynthetic pigment contents (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid), whereas the other soil Se concentrations (10, 25, and 50 mg/kg) inhibited seedling growth. Increases in the soil Se concentrations tended to decrease the superoxide dismutase activity and soluble protein content, but had the opposite effect on the peroxidase and catalase activities. The 5, 10, and 25 mg/kg soil Se concentrations decreased the DNA methylation levels of C. betacea seedlings because of an increase in demethylation patterns (versus 0 mg/kg), whereas the 50 mg/kg soil Se concentration increased the DNA methylation levels because of an increase in hypermethylation patterns (versus 0 mg/kg). Increases in the soil Se concentrations were accompanied by an increasing trend in the Se content of C. betacea seedlings. Moreover, the amount of Se extracted by the shoots was highest for the 25 mg/kg soil Se concentration. Therefore, C. betacea may be able to accumulate relatively large amounts of Se and its growth may be promoted in 5 mg/kg soil Se.

SELECTION OF CITATIONS
SEARCH DETAIL
...