Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542615

ABSTRACT

The magnetic properties of soft magnetic materials, including their saturation magnetic induction strength and permeability, significantly affect the dynamic characteristics of electromagnetic relays. However, the soft materials most commonly used for relays in the magnetic conductive components of electromagnetic systems, such as electrical pure iron, limit further relay design improvement and optimization to a certain extent. Thus, this paper proposes the use of amorphous and nanocrystalline soft magnetic materials with good high-frequency magnetic properties in magnetic circuits. A wavelet analysis was conducted on the high-frequency components of the coil current while the relay operated, and the corresponding magnetic materials were selected. Considering the challenges in processing amorphous and nanocrystalline materials and collecting test data for the accuracy verification of simulation methods, we prepared a scaled-up prototype for use in dynamic characteristic tests. The simulation method was improved, yielding more accurate simulation results regarding the relay's dynamic characteristics. On this basis, six replacement schemes using amorphous and nanocrystalline materials were considered. The test results proved that this application could improve the relay's dynamic characteristics. Finally, a full-size sample with an iron core consisting of nanocrystalline alloy 1K107B was prepared, and the conclusions were verified in tests.

2.
Nanotechnology ; 34(39)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37364536

ABSTRACT

Here, TiO2microspheres with particle sizes of 200-400 nm are embedded in p-i-n perovskite photodetectors, which are used as light scatterers. This approach was implemented to change the light transfer path in the perovskite layer, which gives the device higher photon-capture ability in a specific incident wavelength range. Compared with a pristine device, the photocurrent and responsivity of the device based on such a structure are obviously enhanced in the ranges of 560-610 nm and 730-790 nm. The photocurrent under 590 nm incident light wavelength illumination (light intensityP= 31.42µW·cm-2) increases from 1.45µA to 1.71µA, with an increase of 17.93%, and the responsivity reaches 0.305 A·W-1. In addition, the introduction of TiO2has no additional negative impact on the carrier extraction and the dark current. Also, the response time of the device did not deteriorate. Finally, the role of TiO2as light scatterers is further verified by embedding microspheres into mixed-halide perovskite devices.


Subject(s)
Calcium Compounds , Oxides , Microspheres , Particle Size
3.
Molecules ; 28(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36985640

ABSTRACT

The electron transport layer (ETL) with excellent charge extraction and transport ability is one of the key components of high-performance perovskite solar cells (PSCs). SnO2 has been considered as a more promising ETL for the future commercialization of PSCs due to its excellent photoelectric properties and easy processing. Herein, we propose a facile and effective ETL modification strategy based on the incorporation of methylenediammonium dichloride (MDACl2) into the SnO2 precursor colloidal solution. The effects of MDACl2 incorporation on charge transport, defect passivation, perovskite crystallization, and PSC performance are systematically investigated. First, the surface defects of the SnO2 film are effectively passivated, resulting in the increased conductivity of the SnO2 film, which is conducive to electron extraction and transport. Second, the MDACl2 modification contributes to the formation of high-quality perovskite films with improved crystallinity and reduced defect density. Furthermore, a more suitable energy level alignment is achieved at the ETL/perovskite interface, which facilitates the charge transport due to the lower energy barrier. Consequently, the MDACl2-modified PSCs exhibit a champion efficiency of 22.30% compared with 19.62% of the control device, and the device stability is also significantly improved.

4.
Nanomaterials (Basel) ; 12(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35630995

ABSTRACT

In recent years, rare-earth metals with triply oxidized state, lanthanide ions (Ln3+), have been demonstrated as dopants, which can efficiently improve the optical and electronic properties of metal halide perovskite materials. On the one hand, doping Ln3+ ions can convert near-infrared/ultraviolet light into visible light through the process of up-/down-conversion and then the absorption efficiency of solar spectrum by perovskite solar cells can be significantly increased, leading to high device power conversion efficiency. On the other hand, multi-color light emissions and white light emissions originated from perovskite nanocrystals can be realized via inserting Ln3+ ions into the perovskite crystal lattice, which functioned as quantum cutting. In addition, doping or co-doping Ln3+ ions in perovskite films or devices can effectively facilitate perovskite film growth, tailor the energy band alignment and passivate the defect states, resulting in improved charge carrier transport efficiency or reduced nonradiative recombination. Finally, Ln3+ ions have also been used in the fields of photodetectors and luminescent solar concentrators. These indicate the huge potential of rare-earth metals in improving the perovskite optoelectronic device performances.

5.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35564163

ABSTRACT

Highly luminescent FAPb0.7Sn0.3Br3 nanocrystals with an average photoluminescence (PL) quantum yield of 92% were synthesized by the ligand-assisted reprecipitation method. The 41-nm-thick perovskite film with a smooth surface and strong PL intensity was proven to be a suitable luminescent layer for perovskite light-emitting diodes (PeLEDs). Electrical tests indicate that the double hole-transport layers (HTLs) played an important role in improving the electrical-to-optical conversion efficiency of PeLEDs due to their cascade-like level alignment. The PeLED based on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,40-(N-(p-butylphenyl))-diphenylamine)] (TFB)/poly(9-vinylcarbazole) (PVK) double HTLs produced a high external quantum efficiency (EQE) of 9%, which was improved by approximately 10.9 and 5.14 times when compared with single HTL PVK or the TFB device, respectively. The enhancement of the hole transmission capacity by TFB/PVK double HTLs was confirmed by the hole-only device and was responsible for the dramatic EQE improvement.

6.
J Sep Sci ; 39(2): 412-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26573895

ABSTRACT

A ß-cyclodextrin-modified attapulgite composite was prepared and used as a dispersive micro-solid-phase extraction sorbent for the determination of benzoylurea insecticides in honey samples. Parameters that may influence the extraction efficiency, such as the type and volume of the eluent, the amount of the sorbent, the extraction time and the ionic strength were investigated and optimized using batch and column procedures. Under optimized conditions, good linearity was obtained for all of the tested compounds, with R(2) values of at least 0.9834. The limits of detection were determined in the range of 0.2-1.0 µg/L. The recoveries of the four benzoylurea insecticides in vitex honey and acacia honey increased from 15.2 to 81.4% and from 14.2 to 82.0%, respectively. Although the ß-cyclodextrin-modified attapulgite composite did not show a brilliant adsorption capacity for the selected benzoylurea insecticides, it exhibited a higher adsorption capacity toward relatively hydrophobic compounds, such as chlorfluazuron and hexaflumuron (recoveries in vitex honey samples ranged from 70.0 to 81.4% with a precision of 1.0-3.7%). It seemed that the logPow of the benzoylurea insecticides is related to their recoveries. The results confirmed the possibility of using cyclodextrin-modified palygorskite in the determination of relatively hydrophobic trace pharmaceutical residues.


Subject(s)
Honey/analysis , Insecticides/isolation & purification , Solid Phase Microextraction/methods , Adsorption , Benzamides/analysis , Benzamides/isolation & purification , Insecticides/analysis , Phenylurea Compounds/analysis , Phenylurea Compounds/isolation & purification , Pyridines/analysis , Pyridines/isolation & purification , Solid Phase Microextraction/instrumentation , beta-Cyclodextrins/chemistry
7.
Anal Chim Acta ; 878: 131-9, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26002334

ABSTRACT

A novel sorbent (ß-CD/ATP composite) for dispersive solid-phase extraction (d-SPE) prepared by bonding ß-cyclodextrin to modified attapulgite via silane coupling was used to determine the concentrations of four (fluoro)quinolones (Qs) in honey samples. The subsequent quantification of the Qs (ciprofloxacin, norfloxacin, ofloxacin, and gatifloxacin) was accomplished using high-performance liquid chromatography (HPLC) with ultraviolet detection after the d-SPE procedure. Parameters that may influence the extraction efficiency, such as type and volume of the eluent, type and amount of the sorbent, times of the vortex and sonication process, and pH of the sample, were investigated using batch and column procedures. The optimal experimental conditions (5 mL sample at pH 3, 4 mg of ß-CD/ATP composite as the sorbent, 200 µL of 40% ammonia in methanol as the eluent, with vortex time 60s and sonication time 6 min, and no addition of salt) were obtained from this statistical evaluation. The limits of detection (LODs) were determined to the range from 0.30 to 3.95 µg L(-1). Good recoveries (83.6-88.6%) were obtained under the optimum conditions, and the relative standard deviations (RSDs), which are used to indicate reproducibility, were less than 7.4%. The method was validated with three real honey samples, and the results demonstrated that ß-CD/ATP composite possessed a high adsorption capacity for Qs. Although the LODs were slightly higher than expected, this study confirmed the possibility of using cyclodextrin grafted palygorskite in analytical applications.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Honey/analysis , Magnesium Compounds/chemistry , Quinolones/isolation & purification , Silicon Compounds/chemistry , Solid Phase Extraction/methods , beta-Cyclodextrins/chemistry , Adsorption , Chromatography, High Pressure Liquid/methods , Halogenation , Limit of Detection , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...