Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Small Methods ; : e2301229, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528393

ABSTRACT

The charge-transfer (CT) interactions between organic compounds are reflected in the (opto)electronic properties. Determining and visualizing crystal structures of CT complexes are essential for the design of functional materials with desirable properties. Complexes of pyranine (PYR), methyl viologen (MV), and their derivatives are the most studied water-based CT complexes. Nevertheless, very few crystal structures of CT complexes have been reported so far. In this study, the structures of two PYRs-MVs CT crystals and a map of the noncovalent interactions using 3D electron diffraction (3DED) are reported. Physical properties, e.g., band structure, conductivity, and electronic spectra of the CT complexes and their crystals are investigated and compared with a range of methods, including solid and liquid state spectroscopies and highly accurate quantum chemical calculations based on density functional theory (DFT). The combination of 3DED, spectroscopy, and DFT calculation can provide important insight into the structure-property relationship of crystalline CT materials, especially for submicrometer-sized crystals.

2.
Nat Commun ; 15(1): 571, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233431

ABSTRACT

Miniaturized spectrometers are of immense interest for various on-chip and implantable photonic and optoelectronic applications. State-of-the-art conventional spectrometer designs rely heavily on bulky dispersive components (such as gratings, photodetector arrays, and interferometric optics) to capture different input spectral components that increase their integration complexity. Here, we report a high-performance broadband spectrometer based on a simple and compact van der Waals heterostructure diode, leveraging a careful selection of active van der Waals materials- molybdenum disulfide and black phosphorus, their electrically tunable photoresponse, and advanced computational algorithms for spectral reconstruction. We achieve remarkably high peak wavelength accuracy of ~2 nanometers, and broad operation bandwidth spanning from ~500 to 1600 nanometers in a device with a ~ 30×20 µm2 footprint. This diode-based spectrometer scheme with broadband operation offers an attractive pathway for various applications, such as sensing, surveillance and spectral imaging.

3.
Adv Sci (Weinh) ; 11(5): e2305099, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044310

ABSTRACT

2D transition metal carbides and nitrides (MXenes) suggest an uncommonly broad combination of important functionalities amongst 2D materials. Nevertheless, MXene suffers from facile oxidation and colloidal instability upon conventional water-based processing, thus limiting applicability. By experiments and theory, It is suggested that for stability and dispersibility, it is critical to select uncommonly high permittivity solvents such as N-methylformamide (NMF) and formamide (FA) (εr  = 171, 109), unlike the classical solvents characterized by high dipole moment and polarity index. They also allow high MXene stacking order within thin films on carbon nanotube (CNT) substrates, showing very high Terahertz (THz) shielding effectiveness (SE) of 40-60 dB at 0.3-1.6 THz in spite of the film thinness < 2 µm. The stacking order and mesoscopic porosity turn relevant for THz-shielding as characterized by small-angle X-ray scattering (SAXS). The mechanistic understanding of stability and structural order allows guidance for generic MXene applications, in particular in telecommunication, and more generally processing of 2D materials.

4.
Opt Express ; 31(20): 32373-32382, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859042

ABSTRACT

Synchronised ultrafast soliton lasers have attracted great research interest in recent decades. However, there is a lack of comprehensive understanding regarding the buildup mechanism of synchronised pulses. Here, we report a dynamic analysis of independent and synchronised solitons buildup mechanisms in synchronised ultrafast soliton lasers. The laser comprises an erbium-doped fibre cavity and a thulium-doped fibre cavity bridged with a common arm. Pulses operating at two different wavelengths formed in the cavities are synchronised by cross-phase modulation-induced soliton correlation in the common fibre arm. We find that the whole buildup process of the thulium-doped fibre laser successively undergoes five different stages: continuous wave, relaxation oscillation, quasi-mode-locking, continuous wave mode-locking and synchronised mode-locking. It is found that the starting time of the synchronised solitons is mainly determined by the meeting time of dual-color solitons. Our results will further deepen the understanding of dual-color synchronised lasers and enrich the study of complex nonlinear system dynamics.

5.
Adv Sci (Weinh) ; 10(29): e2303437, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37551999

ABSTRACT

Molybdenum ditelluride (MoTe2 ) exhibits immense potential in post-silicon electronics due to its bandgap comparable to silicon. Unlike other 2D materials, MoTe2 allows easy phase modulation and efficient carrier type control in electrical transport. However, its unstable nature and low-carrier mobility limit practical implementation in devices. Here, a deterministic method is proposed to improve the performance of MoTe2 devices by inducing local tensile strain through substrate engineering and encapsulation processes. The approach involves creating hole arrays in the substrate and using atomic layer deposition grown Al2 O3 as an additional back-gate dielectric layer on SiO2 . The MoTe2 channel is passivated with a thick layer of Al2 O3 post-fabrication. This structure significantly improves hole and electron mobilities in MoTe2 field-effect transistors (FETs), approaching theoretical limits. Hole mobility up to 130 cm-2  V-1 s-1 and electron mobility up to 160 cm-2  V-1 s-1 are achieved. Introducing local tensile strain through the hole array enhances electron mobility by up to 6 times compared to the unstrained devices. Remarkably, the devices exhibit metal-insulator transition in MoTe2 FETs, with a well-defined critical point. This study presents a novel technique to enhance carrier mobility in MoTe2 FETs, offering promising prospects for improving 2D material performance in electronic applications.

6.
Light Sci Appl ; 12(1): 142, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37280211

ABSTRACT

The development of a low-cost compact reconstructive spectrometer paves the way towards portable pm-resolution spectroscopy.

7.
Opt Lett ; 48(10): 2619-2622, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37186723

ABSTRACT

Synchronized lasers working at different wavelengths are of great significance for numerous applications, such as high-energy femtosecond pulse emission, Raman microscopy, and precise timing distribution. Here, we report synchronized triple-wavelength fiber lasers working at 1, 1.55, and 1.9 µm, respectively, by combining the coupling and injection configurations. The laser system consists of three fiber resonators gained by ytterbium-doped fiber, erbium-doped fiber, and thulium-doped fiber, respectively. Ultrafast optical pulses formed in these resonators are obtained by passive mode-locking with the use of a carbon-nanotube saturable absorber. A maximum cavity mismatch of ∼1.4 mm is reached by the synchronized triple-wavelength fiber lasers in the synchronization regime by finely tuning the variable optical delay lines incorporated in the fiber cavities. In addition, we investigate the synchronization characteristics of a non-polarization-maintaining fiber laser in an injection configuration. Our results provide a new, to the best of our knowledge, perspective on multi-color synchronized ultrafast lasers with broad spectral coverage, high compactness, and a tunable repetition rate.

8.
Environ Sci Pollut Res Int ; 30(27): 70783-70802, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37155096

ABSTRACT

Analysis of the probability of extreme precipitation events leading to rainstorm and flood disasters can aid in disaster prevention policy development. Using daily precipitation data from 16 meteorological stations from 1960 to 2019, we calculated eight extreme precipitation indices to analyze the spatio-temporal characteristics of extreme precipitation in the Fen River Basin (FRB) through ensemble empirical mode decomposition and Kriging interpolation. Extreme precipitation events and disasters were defined based on a combination of the antecedent precipitation index (API) and extreme precipitation on the event day and classified; extreme precipitation and the API were ranked from small to large and classified into dry, wet, and moderate (mod) precipitation periods, respectively, yielding nine extreme precipitation event categories. The probability of disasters caused by different types of extreme precipitation events was calculated using a binomial distribution. The results are as follows: (1) between 1960 and 2019, except for extreme precipitation period length, which continuously increased, the extreme precipitation indices changed from a downward to an upward trend since the 1980s. All extreme precipitation indices showed similar interannual variation over short periods and different interdecadal variation over long periods. (2) The extreme precipitation indices showed latitudinal and zonal spatial divergence patterns, but different spatial characteristics were observed around the 1980s. (3) More than 70% of extreme precipitation events in the midstream and downstream fell into four categories: "dry-dry," "dry-mod," "mod-dry," and "mod-mod." (4) A single category VII (VIII) extreme precipitation event in the midstream (downstream) had a maximum probability of causing disaster of 14%. When more than four extreme precipitation events occurred in a year, the probability of one disaster was the highest and that of four or more disasters was < 0.1%. The probability of rainstorm and flood disasters increased gradually with increasing frequency of annual extreme precipitation events.


Subject(s)
Disasters , Floods , Rivers , China , Probability
9.
Science ; 378(6617): 296-299, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36264793

ABSTRACT

Miniaturized computational spectrometers, which can obtain incident spectra using a combination of device spectral responses and reconstruction algorithms, are essential for on-chip and implantable applications. Highly sensitive spectral measurement using a single detector allows the footprints of such spectrometers to be scaled down while achieving spectral resolution approaching that of benchtop systems. We report a high-performance computational spectrometer based on a single van der Waals junction with an electrically tunable transport-mediated spectral response. We achieve high peak wavelength accuracy (∼0.36 nanometers), high spectral resolution (∼3 nanometers), broad operation bandwidth (from ∼405 to 845 nanometers), and proof-of-concept spectral imaging. Our approach provides a route toward ultraminiaturization and offers unprecedented performance in accuracy, resolution, and operation bandwidth for single-detector computational spectrometers.

10.
Chem Commun (Camb) ; 58(75): 10469-10479, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36056696

ABSTRACT

Sunlight affords an inexhaustible and primary energy for Earth. A photoelectrochemical system can efficiently harvest solar energy and convert it into chemicals. However, sophisticated processes and expensive raw materials are critical to restrict its further development. In recent years, the research focus of the PEC system has gradually shifted from traditional metal-based materials to earth-abundant metal-free materials. In this feature article, the photoanode materials for water oxidation reactions have been focused upon. The discussions on metal-based materials mainly include TiO2, BiVO4, and Ta3N5, and the examples for metal-free photoanodes are mainly polymeric carbon nitride and carbon doped boron nitride. This review offers opportunities for the further development of sustainable and cost-effective materials for the rational design of photoanodes for water oxidation reactions.

11.
ACS Photonics ; 9(8): 2825-2832, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35996374

ABSTRACT

Heterojunctions accompanied by energy barriers are of significant importance in two-dimensional materials-based electronics and optoelectronics. They provide more functional device performance, compared with their counterparts with uniform channels. Multimodal optoelectronic devices could be accomplished by elaborately designing band diagrams and architectures of the two-dimensional junctions. Here, we demonstrate deterministic light-to-voltage conversion based on strong dielectric screening effect in a tunable two-dimensional Schottky diode based on semiconductor/metal heterostructure, where the resultant photovoltage is dependent on the intensity of light input but independent of gate voltage. The converted photovoltage across the diode is independent of gate voltage under both monochromatic laser and white light illumination. In addition, the Fermi level of two-dimensional semiconductor area on dielectric SiO2 is highly gate-dependent, leading to the tunable rectifying effect of this heterostructure, which corporates a vertical Schottky junction and a lateral homojunction. As a result, a constant open-circuit voltage of ∼0.44 V and a hybrid "photovoltaic + photoconduction" photoresponse behavior are observed under 1 µW illumination of 403 nm laser, in addition to an electrical rectification ratio up to nearly 104. The scanning photocurrent mappings under different bias voltages indicate that the switchable operation mode (photovoltaic, photoconduction, or hybrid) depends on the bias-dependent effective energy barrier at the two-dimensional semiconductor-metal interface. This approach provides a facile and reliable solution for deterministic on-chip light-to-voltage conversion and optical-to-electrical interconnects.

12.
ACS Appl Mater Interfaces ; 14(27): 31140-31147, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35763802

ABSTRACT

Mixed-dimensional heterostructures combine the merits of materials of different dimensions; therefore, they represent an advantageous scenario for numerous technological advances. Such an approach can be exploited to tune the physical properties of two-dimensional (2D) layered materials to create unprecedented possibilities for anisotropic and high-performance photonic and optoelectronic devices. Here, we report a new strategy to engineer the light-matter interaction and symmetry of monolayer MoS2 by integrating it with one-dimensional (1D) AlGaAs nanowire (NW). Our results show that the photoluminescence (PL) intensity of MoS2 increases strongly in the mixed-dimensional structure because of electromagnetic field confinement in the 1D high refractive index semiconducting NW. Interestingly, the 1D NW breaks the 3-fold rotational symmetry of MoS2, which leads to a strong optical anisotropy of up to ∼60%. Our mixed-dimensional heterostructure-based phototransistors benefit from this and exhibit an improved optoelectronic device performance with marked anisotropic photoresponse behavior. Compared with bare MoS2 devices, our MoS2/NW devices show ∼5 times enhanced detectivity and ∼3 times higher photoresponsivity. Our results of engineering light-matter interaction and symmetry breaking provide a simple route to induce enhanced and anisotropic functionalities in 2D materials.

13.
Nanoscale ; 14(26): 9459-9465, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35735657

ABSTRACT

During the last few decades, photonic integrated circuits have increased dramatically, facilitating many high-performance applications, such as on-chip sensing, data processing, and inter-chip communications. The currently dominating material platforms (i.e., silicon, silicon nitride, lithium niobate, and indium phosphide), which have exhibited great application successes, however, suffer from their own disadvantages, such as the indirect bandgap of silicon for efficient light emission, and the compatibility challenges of indium phosphide with the silicon industry. Here, we report a new dielectric platform using nanostructured bulk van der Waals materials. On-chip light propagation, emission, and detection are demonstrated by taking advantage of different van der Waals materials. Low-loss passive waveguides with MoS2 and on-chip light sources and photodetectors with InSe have been realised. Our proof-of-concept demonstration of passive and active on-chip photonic components endorses van der Waals materials for offering a new dielectric platform with a large material-selection degree of freedom and unique properties toward close-to-atomic scale manufacture of on-chip photonic and optoelectronic devices.

14.
ACS Nano ; 16(1): 568-576, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34985864

ABSTRACT

van der Waals (vdW) heterostructures based on two-dimensional (2D) semiconducting materials have been extensively studied for functional applications, and most of the reported devices work with sole mechanism. The emerging metallic 2D materials provide us new options for building functional vdW heterostructures via rational band engineering design. Here, we investigate the vdW semiconductor/metal heterostructure built with 2D semiconducting InSe and metallic 1T-phase NbTe2, whose electron affinity χInSe and work function ΦNbTe2 almost exactly align. Electrical characterization verifies exceptional diode-like rectification ratio of >103 for the InSe/NbTe2 heterostructure device. Further photocurrent mappings reveal the switchable photoresponse mechanisms of this heterostructure or, in other words, the alternative roles that metallic NbTe2 plays. Specifically, this heterostructure device works in a photovoltaic manner under reverse bias, whereas it turns to phototransistor with InSe channel and NbTe2 electrode under high forward bias. The switchable photoresponse mechanisms originate from the band alignment at the interface, where the band bending could be readily adjusted by the bias voltage. In addition, a conceptual optoelectronic logic gate is proposed based on the exclusive working mechanisms. Finally, the photodetection performance of this heterostructure is represented by an ultrahigh responsivity of ∼84 A/W to 532 nm laser. Our results demonstrate the valuable application of 2D metals in functional devices, as well as the potential of implementing photovoltaic device and phototransistor with single vdW heterostructure.

15.
ACS Appl Mater Interfaces ; 13(49): 58927-58935, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34855351

ABSTRACT

Graphene-based van der Waals heterostructures are promising building blocks for broadband photodetection because of the gapless nature of graphene. However, their performance is mostly limited by the inevitable trade-off between low dark current and photocurrent generation. Here, we demonstrate a hybrid photodetection mode based on the photogating effect coupled with the photovoltaic effect via tunable quantum tunneling through the unique graphene/Bi2Se3 heterointerface. The tunneling junction formed between the semimetallic graphene and the topologically insulating Bi2Se3 exhibits asymmetric rectifying and hysteretic current-voltage characteristics, which significantly suppresses the dark current and enhances the photocurrent. The photocurrent-to-dark current ratio increases by about a factor of 10 with the electrical tuning of tunneling resistance for efficient light detection covering the major photonic spectral band from the visible to the mid-infrared ranges. Our findings provide a novel concept of using tunable quantum tunneling for highly sensitive broadband photodetection in mixed-dimensional van der Waals heterostructures.

16.
Nanoscale ; 10(45): 21219-21224, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30417197

ABSTRACT

The synthesis and functionalization of transition-metal oxides are one of the most active research areas in advanced materials. As a typical transition-metal oxide, iron oxide has been widely used in lithium-ion batteries, gas sensors, and for water treatment. Herein, we synthesized Fe2O3 nanoparticles by a co-precipitation method that is inexpensive and non-toxic. The Fe2O3 nanoparticles exhibited broadband saturable absorption. Furthermore, thin Fe2O3 polyvinyl alcohol films were prepared to realize Q-switched operations in a ytterbium-doped fibre laser, an erbium-doped fibre laser, and a thulium-doped fibre laser. Attributed to the polarization-insensitive feature of the saturable absorber, Q-switched cylindrical vector beams were also generated based on mode coupling and selection in two-mode fibre lasers. Such Fe2O3 nanoparticles show great promise for use in Q-switching applications of infrared fibre lasers and cylindrical vector lasers.

17.
ACS Appl Mater Interfaces ; 10(11): 9679-9687, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29489321

ABSTRACT

Few-layer black phosphorus (BP) which exhibits excellent optical and electronic properties, has great potential applications in nanodevices. However, BP inevitably suffers from the rapid degradation in ambient air because of the high reactivity of P atoms with oxygen and water, which greatly hinders its wide applications. Herein, we demonstrate the electrostatic functionalization as an effective way to simultaneously enhance the stability and dispersity of aqueous phase exfoliated few-layer BP. The poly dimethyldiallyl ammonium chloride (PDDA) is selected to spontaneously and uniformly adsorb on the surface of few-layer BP via electrostatic interaction. The positive charge-center of the N atom of PDDA, which passivates the lone-pair electrons of P, plays a critical role in stabilizing the BP. Meanwhile, the PDDA could serve as hydrophilic ligands to improve the dispersity of exfoliated BP in water. The thinner PDDA-BP nanosheets can stabilize in both air and water even after 15 days of exposure. Finally, the uniform PDDA-BP-polymer film was used as a saturable absorber to realize passive mode-locking operations in a fiber laser, delivering a train of ultrafast pulses with the duration of 1.2 ps at 1557.8 nm. This work provides a new way to obtain highly stable few-layer BP, which shows great promise in ultrafast optics application.

18.
Opt Lett ; 43(7): 1590-1593, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29601037

ABSTRACT

We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 µs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.

19.
ACS Appl Mater Interfaces ; 8(32): 20534-9, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27488352

ABSTRACT

Oxygen evolution reaction (OER) electrocatalysts are confronted with challenges such as sluggish kinetics, low conductivity, and instability, restricting the development of water splitting. In this study, we report an efficient Co(3+)-rich cobalt selenide (Co0.85Se) nanoparticles coated with carbon shell as OER electrocatalyst, which are derived from zeolitic imidazolate framework (ZIF-67) precursor. It is proposed that the organic ligands in the ZIF-67 can effectively enrich and stabilize the Co(3+) ions in the inorganic-organic frameworks and subsequent carbon-coated nanoparticles. In alkaline media, the catalyst exhibits excellent OER performances, which are attributed to its abundant active sites, high conductivity, and superior kinetics.

20.
Adv Mater ; 28(35): 7626-32, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27375288

ABSTRACT

A new design strategy for polyimides/carbon nanotube networks is reported, aiming to passivate the hydrogen-evolution mechanism on the molecular structures of electrodes, thus substantially boosting their aqueous energy-storage capabilities. The intrinsic sluggish hydrogen-evolution activity of polyimides is further passivated via Li(+) association during battery charging, leading to a much wider voltage window and exceptional energy-storage capability.

SELECTION OF CITATIONS
SEARCH DETAIL
...