Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(24): e2300572, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37057612

ABSTRACT

After the preparation of 2D electronic flat band (EFB) in van der Waals (vdW) superlattices, recent measurements suggest the existence of 1D electronic flat bands (1D-EFBs) in twisted vdW bilayers. However, the realization of 1D-EFBs is experimentally elusive in untwisted 2D layers, which is desired considering their fabrication and scalability. Herein, the discovery of 1D-EFBs is reported in an untwisted in situ-grown two atomic-layer Bi(110) superlattice self-aligned on an SnSe(001) substrate using scanning probe microscopy measurements and density functional theory calculations. While the Bi-Bi dimers of Bi zigzag (ZZ) chains are buckled, the epitaxial lattice mismatch between the Bi and SnSe layers induces two 1D buckling reversal regions (BRRs) extending along the ZZ direction in each Bi(110)-11 × 11 supercell. A series of 1D-EFBs arises spatially following BRRs that isolate electronic states along the armchair (AC) direction and localize electrons in 1D extended states along ZZ due to quantum interference at a topological node. This work provides a generalized strategy for engineering 1D-EFBs in utilizing lattice mismatch between untwisted rectangular vdW layers.

2.
Nat Commun ; 10(1): 3374, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31358744

ABSTRACT

Collective molecular physical properties can be enhanced from their intrinsic characteristics by templating at material interfaces. Here we report how a black phosphorous (BP) substrate concatenates a nearly-free-electron (NFE) like conduction band of a C60 monolayer. Scanning tunneling microscopy reveals the C60 lowest unoccupied molecular orbital (LUMO) band is strongly delocalized in two-dimensions, which is unprecedented for a molecular semiconductor. Experiment and theory show van der Waals forces between C60 and BP reduce the inter-C60 distance and cause mutual orientation, thereby optimizing the π-π wave function overlap and forming the NFE-like band. Electronic structure and carrier mobility calculations predict that the NFE band of C60 acquires an effective mass of 0.53-0.70 me (me is the mass of free electrons), and has carrier mobility of ~200 to 440 cm2V-1s-1. The substrate-mediated intermolecular van der Waals interactions provide a route to enhance charge delocalization in fullerenes and other organic semiconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...