Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38426522

ABSTRACT

All-inorganic CsPbI2Br inverted perovskite solar cells (PSCs) have drawn increasing attention because of their outstanding thermal stability and compatible process with tandem cells. However, relatively low open circuit voltage (Voc) has lagged their progress far behind theoretical limits. Herein, we introduce phenylmethylammonium iodide and 4-trifluoromethyl phenylmethylammonium iodide (CFPMAI) on the surface of a CsPbI2Br perovskite film and investigate their passivation effects. It is found that CFPMAI with a -CF3 substituent significantly decreases the trap density of the perovskite film by forming interactions with the under-coordinated Pb2+ ions and effectively suppresses the non-radiative recombination in the resulting PSC. In addition, CFPMAI surface passivation facilitates the optimization of energy-level alignment at the CsPbI2Br perovskite/[6,6]-phenyl C61 butyric acid methyl ester interface, resulting in improved charge extraction from the perovskite to the charge transport layer. Consequently, the optimized inverted CsPbI2Br device exhibits a markedly improved champion efficiency of 14.43% with a Voc of 1.12 V, a Jsc of 16.31 mA/cm2, and a fill factor of 79.02%, compared to the 10.92% (Voc of 0.95 V) efficiency of the control device. This study confirms the importance of substituent groups on surface passivation molecules for effective passivation of defects and optimization of energy levels, particularly for Voc improvement.

2.
Langmuir ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320286

ABSTRACT

All-inorganic perovskite solar cells (PSCs) have recently received increasing attention due to their outstanding thermal stability. However, the performance of these devices, especially for the devices with a p-i-n structure, is still inferior to that of the typical organic-inorganic counterparts. In this study, we introduce phenylammonium iodides with different side groups on the surface of the CsPbI2Br perovskite film and investigate their passivation effects. Our studies indicate that the 4-trifluoromethyl phenylammonium iodide (CFPA) molecule with the -CF3 side group effectively decreases the trap density of the perovskite film by forming interactions with the undercoordinated Pb2+ ions and significantly inhibits the nonradiative recombination in the derived PSC, leading to an enhanced open-circuit voltage (Voc) from 0.96 to 1.10 V after passivation. Also, the CFPA post-treatment enables better energy-level alignment between the conduction band minimum of CsPbI2Br perovskite and [6,6]-phenyl C61 butyric acid methyl ester, thereby enhancing the charge extraction from the perovskite to the charge transport layer. These combined benefits result in a significant enhancement of the power conversion efficiency from 11.22 to 14.37% for inverted CsPbI2Br PSCs. The device without encapsulation exhibits a degradation of only ≈4% after 1992 h in a N2 glovebox.

3.
RSC Adv ; 12(51): 32925-32948, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36425177

ABSTRACT

Inorganic halide perovskites have attracted significant attention in the field of photovoltaics (PV) in recent years due to their superior intrinsic thermal stability and excellent theoretical power conversion efficiency (PCE). CsPbI3 with a bandgap of ∼1.7 eV is considered to be the most potential candidate for PV application. However, bulk CsPbI3 films exhibit poor phase stability. The substitution of some iodide ions with bromide/chloride in CsPbI3 results in the formation of mixed-halide CsPbX3 perovskites, which exhibit a good balance between phase stability and efficiency. The halogen-tunable mixed-halide inorganic perovskites have a bandgap matching the sunlight region and show great potential for application in multi-junction tandem and semitransparent solar cells. Herein, the progress of mixed-halide CsPbX3 PSCs is systematically reviewed, including CsPbI x Br y Cl3-x-y - and CsPbIBr2-based IPSCs. In the case of CsPbIBr2 IPSCs, we introduce the low-temperature deposition of CsPbIBr2 films, doping methods for the preparation of high-quality CsPbIBr2 films and strategies for improving the performance of solar cells. Furthermore, the mechanism of crystallization/interface engineering for the preparation of high-quality CsPbIBr2 films and efficient solar cells devices is emphasized. Finally, the development direction of further improving the PV performance and commercialization of mixed-halide IPSCs are summarized and prospected.

4.
ACS Omega ; 5(17): 9752-9758, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32391462

ABSTRACT

LiFePO4 (LFP) is one of the cathode materials widely used in lithium ion batteries at present, but its electronic conductivity is still unsatisfactory, which will affect its electrochemical performance. Ga-coated LiFePO4@C (LFP@C) samples were prepared by a hydrothermal method and ultrasonic dispersion technology. Ga has good electrical conductivity and can rapidly conduct electrons within the LFP cathode material under the synergistic effect with C coating, thus improving the dynamic performance of the LFP cathode material. The experimental results show that LFP@C/Ga samples exhibit good electrochemical performance. Compared with the pristine LFP@C, the 1.0 wt % Ga-coated LFP@C cathode exhibits excellent discharge capacity and cycle stability. The former shows a discharge capacity of 152.6 mA h g-1 at 1 C after 100 cycles and a discharge capacity retention rate of 98.77%, while pristine LFP@C shows only a discharge capacity of 114.5 mA h g-1 and a capacity retention rate of 95.84% after 100 cycles at 1 C current density.

5.
RSC Adv ; 10(45): 27014-27023, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-35515754

ABSTRACT

Metal-nitrogen-carbon materials (Fe-N/C) have been extensively studied as one of the most excellent electrocatalysts with good catalytic activities and cheap price towards the oxygen reduction reaction (ORR). The rational design of metal-organic framework (MOF) derived carbon materials with rapid mass transport ability and good stability is a great challenge to achieve. Herein, intensive research of Fe-N/C catalysts prepared from assembling MOFs with cheap iron phthalocyanine (FePc) for the ORR is innovatively carried out. A series of Fe-N/C nano-architectures are simply synthesized by a convenient assembling method under different temperatures (800 to 1000 °C). The assembly method at high temperatures tunes the number of FeN x active sites and intensifies the exposure of interior active sites. The highly dispersing Fe20-N/C electrocatalyst treated at 900 °C exhibits remarkable stability and excellent ORR activities with a half-wave potential of 0.866 V (vs. RHE) in alkaline solution, which is higher than that of commercial Pt/C (0.838 V vs. RHE) under the same test conditions. X-ray photoelectron spectroscopy results illustrate that incorporated MOFs interact with the active centre of FePc, tend to enhance the electron transition and to promote the kinetics of the ORR. Overall, highly dispersed Fe-N/C MOF-based materials are excellent non-precious metal electrocatalysts for energy and environmental applications.

6.
R Soc Open Sci ; 5(10): 180634, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30473818

ABSTRACT

Chromium deposition and poisoning of La2NiO4 cathode of solid oxide fuel cell were studied. La2NiO4 cathode showed stable performance in the presence of metallic interconnects. Comparing with the polarization resistance (R p) of La2NiO4 cathode in the absence of metallic interconnects, R p did not change in the presence of metallic interconnect. After electrical conductivity relaxation method, La2NiO4 with high surface oxygen diffusion coefficients working under Cr atmosphere improved the oxygen reduction kinetics and increased cathode O2 reduction reaction rates. No chromium deposition was observed on the La2NiO4 cathode surface after polarization for 20 h at 800°C. The chemical compatibility of La2NiO4/Cr2O3 and La2NiO4/Gd0.1Ce0.9O1.95 (GDC) study indicates that La2NiO4 did not react with Cr2O3 and GDC under the operating temperature. The results indicate that La2NiO4 cathode is a potential chromium-tolerant material of solid oxide fuel cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...