Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5030, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596287

ABSTRACT

The dynamic regulation of supramolecular chirality in non-equilibrium systems can provide valuable insights into molecular self-assembly in living systems. Herein, we demonstrate the use of chemical fuels for regulating self-assembly pathway, which thereby controls the supramolecular chirality of assembly in non-equilibrium systems. Depending on the nature of different fuel acids, the system shows pathway-dependent non-equilibrium self-assembly, resulting in either dynamic self-assembly with transient supramolecular chirality or kinetically trapped self-assembly with inverse supramolecular chirality. More importantly, successive conducting of chemical-fueled process and thermal annealing process allows for the sequential programmability of the supramolecular chirality between four different chiral hydrogels, affording a new example of a multistate supramolecular chiroptical switch that can be recycled multiple times. The current finding sheds new light on the design of future supramolecular chiral materials, offering access to alternative self-assembly pathways and kinetically controlled non-equilibrium states.

2.
Adv Mater ; 35(6): e2208392, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401607

ABSTRACT

Next-generation energy storage devices should be soft, stretchable, and self-healable. Previously reported self-healable batteries mostly possess limited stretchability and rely on healable electrodes or electrolytes rather than achieving full-device self-healability. Herein, an all-component self-bonding strategy is reported to obtain an all-eutectogel soft battery (AESB) that simultaneously achieves full-cell autonomous self-healability and omnidirectional intrinsic stretchability (>1000% areal strain) over a broad temperature range (-20~60 °C). Without requiring any external stimulus, the five-layered soft battery can efficiently recover both its mechanical and electrochemical performance at full-cell level. The developed AESB can be easily configured into various 3D architectures with highly interfacial compatible eutectogel electrodes, electrolyte, and substrate, presenting an excellent opportunity for the development of embodied energy technologies. The present work provides a general and user-friendly soft electronic material platform for fabricating a variety of intrinsic self-healing stretchable multi-layered electronics, which are promising beyond the field of energy storage, such as displays, sensors, circuits, and soft robots.

3.
Future Oncol ; 18(36): 3993-4004, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36346067

ABSTRACT

Aim: Gastric cancer (GC) is the leading cause of cancer death, and is associated with host genetic factors. This study aimed to determine the impact of SP4 polymorphisms on GC. Materials & methods: Four hundred and eighty-nine GC patients and 481 healthy subjects were recruited. The association between single nucleotide polymorphisms and GC risk was investigated by logistic regression analysis. Results: It was observed that rs39302 and rs7811417 were related to a decreased GC risk. Stratified analyses showed that rs39302 decreased GC susceptibility at ages ≤60 years, in men, GC patients who had previously smoked and drank. rs7811417 had a risk-decreasing impact on the patients aged ≤60 years, in men, GC patients who were nonsmoking and nondrinking. rs35929923 decreased the GC risk of patients in grade III-IV and the lymph node metastasis subgroup. Conclusion: SP4 gene polymorphisms are associated with GC risk.


Subject(s)
Genetic Predisposition to Disease , Stomach Neoplasms , Male , Humans , Genotype , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Polymorphism, Single Nucleotide , Lymphatic Metastasis , Case-Control Studies , Risk Factors
4.
Adv Sci (Weinh) ; 9(20): e2200753, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35522020

ABSTRACT

Most existing stretchable batteries can generally only be stretched uniaxially and suffer from poor mechanical and electrochemical robustness to withstand extreme mechanical and environmental challenges. A highly efficient bifunctional electrocatalyst is herein developed via the unique self-templated conversion of a guanosine-based supramolecular hydrogel and presents a fully integrated design strategy to successfully fabricate an omnidirectionally stretchable and extremely environment-adaptable Zn-air battery (ZAB) through the synergistic engineering of active materials and device architecture. The electrocatalyst demonstrates a very low reversible overpotential of only 0.68 V for oxygen reduction/evolution reactions (ORR/OER). This ZAB exhibits superior omnidirectional stretchability with a full-cell areal strain of >1000% and excellent durability, withstanding more than 10 000 stretching cycles. Promisingly, without any additional pre-treatment, the ZAB exhibits outstanding ultra-low temperature tolerance (down to -60 °C) and superior waterproofness, withstanding continuous water rinsing (>5 h) and immersion (>3 h). The present work offers a promising strategy for the design of omnidirectionally stretchable and high-performance energy storage devices for future on-skin wearable applications.

5.
Mater Horiz ; 9(6): 1700-1707, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35421880

ABSTRACT

Currently developed adhesives are overwhelmingly polymeric in nature. Herein, we highlight for the first time the potential of supramolecular eutectogels assembled from small molecules as robust low-molecular-weight (LMW) supramolecular adhesives in air, water and organic solvents, and under low temperatures. These supramolecular eutectogels were produced from commercial alkyl trimethyl ammonium bromide (CnTAB) in emerging deep eutectic solvents (DESs), which demonstrated rapid (∼2 min), robust, and tunable adhesion to both hydrophilic and hydrophobic surfaces at room temperature in air. Moreover, high adhesion performance was maintained even in liquid nitrogen (-196 °C), underwater, and in organic solvents. A study of the structure-property relationship of these adhesives and molecular dynamics (MD) simulations further clarified the assembly and adhesion mechanism of the C12TAB molecules in DESs. Compared with traditional polymer adhesives and several existing examples of LMW supramolecular adhesives with solvent-free dry network structures, the spontaneous self-assembly of LMW gelators in versatile DESs provides a new strategy for the facile construction of high-strength supramolecular adhesives with gel network structures for a diverse range of harsh environments.


Subject(s)
Adhesives , Polymers , Adhesives/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Weight , Polymers/chemistry , Solvents/chemistry
6.
Angew Chem Int Ed Engl ; 61(9): e202114471, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34927378

ABSTRACT

The temporal and spatial control of natural systems has aroused great interest for the creation of synthetic mimics. By using boronic ester based dynamic covalent chemistry and coupling it with an internal pH feedback system, we have developed a new chemically fueled reaction network for non-equilibrium supramolecular chiral G-quadruplex hydrogels with programmable lifetimes from minutes, to hours, to days, as well as high transparency and conductivity, excellent injectability, and rapid self-healing properties. The system can be controlled by the kinetically controlled in situ formation and dissociation of dynamic boronic ester bonds between the cis-diol of guanosine (G) and 5-fluorobenzoxaborole (B) in the presence of chemical fuels (KOH and 1,3-propanesultone), thereby leading to a precipitate-solution-gel-precipitate cycle under non-equilibrium conditions. A combined experimental-computational approach showed the underlying mechanism of the non-equilibrium self-assembly involves aggregation and disaggregation of right-handed helical G-quadruplex superstructures. The proposed dynamic boronic ester-based non-equilibrium self-assembly strategy offers a new option to design next-generation adaptive and interactive smart materials.

7.
Chemosphere ; 263: 127971, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297027

ABSTRACT

Calcareous soil has a strong buffering capacity for neutralizing acid and stabilizing cadmium (Cd) because of the high calcium carbonate (CaCO3) content. However, it is not clear whether the buffering capacity of calcareous soil can be maintained after long-term wastewater irrigation. We selected a typical area in western China that has been irrigated with wastewater for over 50 years to study the temporal changes of soil properties and their effects on Cd uptake by wheat. The results showed that compared with the background level before the 1960s, the soil pH and CaCO3 content in 2018 were lower by 0.80 units and 35%, respectively, while the soil organic matter (SOM) content, Olsen phosphorus (P) content, and soil total Cd content in 2018 increased by 1.54, 13.05, and 164 times, respectively. Due to the significant decrease in the soil pH and CaCO3, the high load of soil total Cd and electrical conductivity, the low soil clay content, and the coupling of SOM with soil nitrogen and P, the input Cd was activated. Furthermore, the activated Cd was effectively taken up by wheat roots and transported to grains with the assistance of dissolved organic carbon. Our results highlight that long-term wastewater irrigation caused irreversible damage to soil buffering capacity, resulting in the Cd activation and the enhancement of Cd uptake by wheat.


Subject(s)
Soil Pollutants , Soil , Cadmium/analysis , China , Soil Pollutants/analysis , Triticum , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...