Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
PLoS Pathog ; 20(5): e1012214, 2024 May.
Article in English | MEDLINE | ID: mdl-38722857

ABSTRACT

Epithelial cells function as the primary line of defense against invading pathogens. However, bacterial pathogens possess the ability to compromise this barrier and facilitate the transmigration of bacteria. Nonetheless, the specific molecular mechanism employed by Mycobacterium tuberculosis (M.tb) in this process is not fully understood. Here, we investigated the role of Rv2569c in M.tb translocation by assessing its ability to cleave E-cadherin, a crucial component of cell-cell adhesion junctions that are disrupted during bacterial invasion. By utilizing recombinant Rv2569c expressed in Escherichia coli and subsequently purified through affinity chromatography, we demonstrated that Rv2569c exhibited cell wall-associated serine protease activity. Furthermore, Rv2569c was capable of degrading a range of protein substrates, including casein, fibrinogen, fibronectin, and E-cadherin. We also determined that the optimal conditions for the protease activity of Rv2569c occurred at a temperature of 37°C and a pH of 9.0, in the presence of MgCl2. To investigate the function of Rv2569c in M.tb, a deletion mutant of Rv2569c and its complemented strains were generated and used to infect A549 cells and mice. The results of the A549-cell infection experiments revealed that Rv2569c had the ability to cleave E-cadherin and facilitate the transmigration of M.tb through polarized A549 epithelial cell layers. Furthermore, in vivo infection assays demonstrated that Rv2569c could disrupt E-cadherin, enhance the colonization of M.tb, and induce pathological damage in the lungs of C57BL/6 mice. Collectively, these results strongly suggest that M.tb employs the serine protease Rv2569c to disrupt epithelial defenses and facilitate its systemic dissemination by crossing the epithelial barrier.


Subject(s)
Bacterial Proteins , Cadherins , Epithelial Cells , Mycobacterium tuberculosis , Serine Proteases , Cadherins/metabolism , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/metabolism , Animals , Humans , Mice , Serine Proteases/metabolism , Serine Proteases/genetics , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , A549 Cells , Tuberculosis/microbiology , Tuberculosis/metabolism , Female
2.
J Magn Reson Imaging ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602245

ABSTRACT

BACKGROUND: The detection rate of lung nodules has increased considerably with CT as the primary method of examination, and the repeated CT examinations at 3 months, 6 months or annually, based on nodule characteristics, have increased the radiation exposure of patients. So, it is urgent to explore a radiation-free MRI examination method that can effectively address the challenges posed by low proton density and magnetic field inhomogeneities. PURPOSE: To evaluate the potential of zero echo time (ZTE) MRI in lung nodule detection and lung CT screening reporting and data system (lung-RADS) classification, and to explore the value of ZTE-MRI in the assessment of lung nodules. STUDY TYPE: Prospective. POPULATION: 54 patients, including 21 men and 33 women. FIELD STRENGTH/SEQUENCE: Chest CT using a 16-slice scanner and ZTE-MRI at 3.0T based on fast gradient echo. ASSESSMENT: Nodule type (ground-glass nodules, part-solid nodules, and solid nodules), lung-RADS classification, and nodule diameter (manual measurement) on CT and ZTE-MRI images were recorded. STATISTICAL TESTS: The percent of concordant cases, Kappa value, intraclass correlation coefficient (ICC), Wilcoxon signed-rank test, Spearman's correlation, and Bland-Altman. The p-value <0.05 is considered significant. RESULTS: A total of 54 patients (age, 54.8 ± 11.9 years; 21 men) with 63 nodules were enrolled. Compared with CT, the total nodule detection rate of ZTE-MRI was 85.7%. The intermodality agreement of ZTE-MRI and CT lung nodules type evaluation was substantial (Kappa = 0.761), and the intermodality agreement of ZTE-MRI and CT lung-RADS classification was moderate (Kappa = 0.592). The diameter measurements between ZTE-MRI and CT showed no significant difference and demonstrated a high degree of interobserver (ICC = 0.997-0.999) and intermodality (ICC = 0.956-0.985) agreements. DATA CONCLUSION: The measurement of nodule diameter by pulmonary ZTE-MRI is similar to that by CT, but the ability of lung-RADS to classify nodes from MRI images still requires further research. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

4.
Insect Sci ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454304

ABSTRACT

Until the advent of phylogenomics, the atypical morphology of extant representatives of the insect orders Grylloblattodea (ice-crawlers) and Mantophasmatodea (gladiators) had confounding effects on efforts to resolve their placement within Polyneoptera. This recent research has unequivocally shown that these species-poor groups are closely related and form the clade Xenonomia. Nonetheless, divergence dates of these groups remain poorly constrained, and their evolutionary history debated, as the few well-identified fossils, characterized by a suite of morphological features similar to that of extant forms, are comparatively young. Notably, the extant forms of both groups are wingless, whereas most of the pre-Cretaceous insect fossil record is composed of winged insects, which represents a major shortcoming of the taxonomy. Here, we present new specimens embedded in mid-Cretaceous amber from Myanmar and belonging to the recently described species Aristovia daniili. The abundant material and pristine preservation allowed a detailed documentation of the morphology of the species, including critical head features. Combined with a morphological data set encompassing all Polyneoptera, these new data unequivocally demonstrate that A. daniili is a winged stem Grylloblattodea. This discovery demonstrates that winglessness was acquired independently in Grylloblattodea and Mantophasmatodea. Concurrently, wing apomorphic traits shared by the new fossil and earlier fossils demonstrate that a large subset of the former "Protorthoptera" assemblage, representing a third of all known insect species in some Permian localities, are genuine representatives of Xenonomia. Data from the fossil record depict a distinctive evolutionary trajectory, with the group being both highly diverse and abundant during the Permian but experiencing a severe decline from the Triassic onwards.

5.
Front Med (Lausanne) ; 11: 1274568, 2024.
Article in English | MEDLINE | ID: mdl-38420364

ABSTRACT

Background: Persistent infection with high-risk human papillomavirus (HR-HPV) can lead to cervical intraepithelial neoplasia and cancer. At present, there is no medication that specifically targets HR-HPV infection. Objective: This study aimed to evaluate the effectiveness of different interventions in promoting HR-HPV regression using a MeSH meta-analysis method. Methods: A search for randomized controlled trials (RCTs) reporting different interventions for the treatment of HR-HPV infection included PubMed, Web of Science, Embase and Cochrane Library from the inception of the databases to March 8, 2023. Two researchers independently screened the articles, extracted data, and evaluated the quality. The literature that met the inclusion criteria was selected, the quality and risk of bias of the included studies were assessed according to the Cochrane 5.1 manual, and NMA was performed using Stata 16.0. The area under the cumulative ranking probability graph (SUCRA) represented the probability that each treatment would be the best intervention. Results: Nine studies involving 961 patients and 7 treatment options were included in the analysis. The results of the network meta-analysis indicated the following rank order in terms of promoting HR-HPV conversion: Anti-HPV biological dressing > vaginal gel > imiquimod > REBACIN® > interferon > probiotics > observation/placebo > Polyphenon E. Conclusion: Anti-HPV biological dressing treatment was found to be significantly effective in promoting HR-HPV conversion. However, further validation of the findings is necessary due to the limited number and quality of studies included in the analysis. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023413917.

6.
Biomater Sci ; 12(3): 564-580, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37975197

ABSTRACT

Biomacromolecules, such as proteins, nucleic acids and polysaccharides, are widely distributed in the human body, and some of them have been recognized as the targets of drugs for disease theranostics. Drugs typically act on targets in two ways: non-covalent bond and covalent bond. Non-covalent bond-based drugs have some disadvantages, such as structural instability and environmental sensitivity. Covalent interactions between drugs and targets have a longer action time, higher affinity and controllability than non-covalent interactions of conventional drugs. With the development of artificial intelligence, covalent drugs have received more attention and have been developed rapidly in pharmaceutical research in recent years. From the perspective of covalent drugs, this review summarizes the design methods and the effects of covalent drugs. Finally, we discuss the application of covalent peptide drugs and expect to provide a new reference for cancer treatment.


Subject(s)
Nucleic Acids , Precision Medicine , Humans , Artificial Intelligence , Peptides , Proteins/chemistry , Nucleic Acids/chemistry
7.
J Cereb Blood Flow Metab ; 44(2): 252-271, 2024 02.
Article in English | MEDLINE | ID: mdl-37737093

ABSTRACT

How transient hyperglycemia contributes to cerebro-vascular disease has been a challenge to study under controlled physiological conditions. We use amplified, ultrashort laser-pulses to physically disrupt brain-venule endothelium at targeted locations. This vessel disruption is performed in conjunction with transient hyperglycemia from a single injection of metabolically active D-glucose into healthy mice. The observed real-time responses to laser-induced disruption include rapid serum extravasation, platelet aggregation, and neutrophil recruitment. Thrombo-inflammation is pharmacologically ameliorated by a platelet inhibitor, by a scavenger of reactive oxygen species, and by a nitric oxide donor. As a control, vessel thrombo-inflammation is significantly reduced in mice injected with metabolically inert L-glucose. Venules in mice with diabetes show a similar response to laser-induced disruption and damage is reduced by restoration of normo-glycemia. Our approach provides a controlled method to probe synergies between transient metabolic and physical vascular perturbations and can reveal new aspects of brain pathophysiology.


Subject(s)
Blood Glucose , Glucose , Hyperglycemia , Animals , Mice , Venules/metabolism , Blood Glucose/metabolism , Inflammation/metabolism , Hyperglycemia/metabolism , Blood Platelets/metabolism , Neutrophils/metabolism , Endothelium, Vascular/metabolism
8.
Front Cell Infect Microbiol ; 13: 1292864, 2023.
Article in English | MEDLINE | ID: mdl-38076461

ABSTRACT

Mycobacterium tuberculosis (Mtb) is an intracellular bacterium that causes a highly contagious and potentially lethal tuberculosis (TB) in humans. It can maintain a dormant TB infection within the host. DosR (dormancy survival regulator) (Rv3133c) has been recognized as one of the key transcriptional proteins regulating bacterial dormancy and participating in various metabolic processes. In this study, we extensively investigate the still not well-comprehended role and mechanism of DosR in Mycobacterium bovis (M. bovis) Bacillus Calmette-Guérin (BCG) through a combined omics analysis. Our study finds that deleting DosR significantly affects the transcriptional levels of 104 genes and 179 proteins. Targeted metabolomics data for amino acids indicate that DosR knockout significantly upregulates L-Aspartic acid and serine synthesis, while downregulating seven other amino acids, including L-histidine and lysine. This suggests that DosR regulates amino acid synthesis and metabolism. Taken together, these findings provide molecular and metabolic bases for DosR effects, suggesting that DosR may be a novel regulatory target.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium bovis/genetics , Bacterial Proteins/metabolism , Multiomics , Tuberculosis/microbiology , Lysine/metabolism , BCG Vaccine
9.
Nat Commun ; 14(1): 8234, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086980

ABSTRACT

DNA methylation at the fifth position of cytosine (5-methylcytosine, 5mC) is a crucial epigenetic modification for regulating gene expression, but little is known about how it regulates gene expression in insects. Here, we pursue the detailed molecular mechanism by which DNMT1-mediated 5mC maintenance regulates female reproduction in the German cockroach, Blattella germanica. Our results show that Dnmt1 knockdown decreases the level of 5mC in the ovary, upregulating numerous genes during choriogenesis, especially the transcription factor ftz-f1. The hypomethylation at the ftz-f1 promoter region increases and prolongs ftz-f1 expression in ovarian follicle cells during choriogenesis, which consequently causes aberrantly high levels of 20-hydroxyecdysone and excessively upregulates the extracellular matrix remodeling gene Mmp1. These changes further impair choriogenesis and disrupt fertilization by causing anoikis of the follicle cells, a shortage of chorion proteins, and malformation of the sponge-like bodies. This study significantly advances our understanding of how DNA 5mC modification regulates female reproduction in insects.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Animals , Female , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Insecta/metabolism , Fertilization/genetics
10.
Commun Biol ; 6(1): 1102, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907587

ABSTRACT

Currently, studies of ancient faunal community networks have been based mostly on uniformitarian and functional morphological evidence. As an important source of data, taphonomic evidence offers the opportunity to provide a broader scope for understanding palaeoecology. However, palaeoecological research methods based on taphonomic evidence are relatively rare, especially for body fossils in lacustrine sediments. Such fossil communities are not only affected by complex transportation and selective destruction in the sedimentation process, they also are strongly affected by time averaging. Historically, it has been believed that it is difficult to study lacustrine entombed fauna by a small-scale quadrat survey. Herein, we developed a software, the TaphonomeAnalyst, to study the associational network of lacustrine entombed fauna, or taphocoenosis. TaphonomeAnalyst allows researchers to easily perform exploratory analyses on common abundance profiles from taphocoenosis data. The dataset for these investigations resulted from fieldwork of the latest Middle Jurassic Jiulongshan Formation near Daohugou Village, in Ningcheng County of Inner Mongolia, China, spotlighting the core assemblage of the Yanliao Fauna. Our data included 27,000 fossil specimens of animals from this deposit, the Yanliao Fauna, whose analyses reveal sedimentary environments, taphonomic conditions, and co-occurrence networks of this highly studied assemblage, providing empirically robust and statistically significant evidence for multiple Yanliao habitats.


Subject(s)
Ecosystem , Fossils , Animals , China
11.
Ying Yong Sheng Tai Xue Bao ; 34(11): 2898-2906, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37997400

ABSTRACT

Soil respiration is a key process in forest biogeochemical cycling. Exploring the relationship between plant functional traits and soil respiration can help understand the effects of tree species conversion on soil carbon cycling. In this study, we selected 15 common subtropical tree species planted in the logging site of second-generation Chinese fir forest to measure soil CO2 emission fluxes, soil physicochemical properties, leaf and root functional traits of each species, and explored the effects of plant functional traits on soil respiration. The results showed that the annual flux of soil CO2 emissions varied from 7.93 to 22.52 Mg CO2·hm-2, with the highest value under Castanopsis carlesii (22.52 Mg CO2·hm-2) and the lowest value under Taxus wallichiana (7.93 Mg CO2·hm-2). Results of stepwise regression analysis showed that the annual flux of soil CO2 emission decreased with the increases of leaf nitrogen content and fine root diameter, and increased with increasing leaf non-structural carbohydrate. In the structural equation model, leaf non-structural carbohydrate had a direct and significant positive effect on soil CO2 emission fluxes, while leaf nitrogen content and fine root diameter had a direct negative effect by decreasing soil pH and soluble organic nitrogen content. Plantations of different tree species would affect soil CO2 emission directly by changing functional traits related to water and nutrient acquisition or indirectly through soil properties. When creating plantations, we should select tree species based on the relationship between plant functional traits and ecosystem functions, with a view to improving forest productivity and soil carbon sequestration potential.


Subject(s)
Ecosystem , Soil , Soil/chemistry , Carbon Dioxide/analysis , Forests , Trees , Nitrogen/analysis , Carbohydrates
12.
Int J Biol Macromol ; 253(Pt 8): 127547, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37863130

ABSTRACT

Macrophages serve as the primary immune cells responsible for the innate immune defense against Mycobacterium tuberculosis (MTB) infection within the host. Specifically, NLRP3, a member of the NLRs family, plays a significant role in conferring resistance against MTB infection. Conversely, MTB evades innate immune killing by impeding the activation of the NLRP3 inflammasome, although the precise mechanism remains uncertain. In this study, we have identified PE12 (Rv1172c), a member of the PE/PPE family proteins, as an extracellular protein of MTB. PE12 interacts with Toll like receptor 4 (TLR4) in macrophages, forming the PE12-TLR4 complex which subsequently inhibits the transcription and expression of NLRP3. As a result, the transcription and secretion of IL-1ß are reduced through the PE12-TLR4-NLRP3-IL-1ß immune pathway. In vitro and in vivo experiments using a PE12-deficient strain (H37RvΔPE12) demonstrate a weakening of the suppression of the inflammatory response to MTB infection. Our findings highlight the role of the PE12 protein in not only inhibiting the transcription and release of inflammatory cytokines but also mediating the killing of MTB escape macrophages through TLR4 and inducing lung injury in MTB-infected mice. These results provide evidence that PE12 plays a significant role in the inhibition of the host immune response by MTB.


Subject(s)
Mycobacterium tuberculosis , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Macrophages/metabolism , Inflammasomes/metabolism
13.
Heliyon ; 9(8): e19274, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37664698

ABSTRACT

Changes in educational systems and English teaching strategies have increased the need for automatic methods for English Teaching Quality Evaluation (ETQE). A practical model for ETQE applies in different fields, determines the most relevant factors in teaching quality (TQ), and has optimal performance in different conditions. This paper presents a new method based on Artificial Intelligence (AI) and meta-heuristic algorithms to solve the ETQE problem. The proposed method performs the prediction process in two phases: "determination of related indicators" and "quality prediction". During the first phase, after introducing a set of 24 candidate indicators, an optimal subset of them having maximum correlation with ETQE and minimum redundancy are selected using Artificial Bee Colony (ABC) algorithm. In the second phase of the proposed method, a Classification and Regression Tree (CART) model optimized by ABC are applied to predict ETQ based on the indicators determined in the first phase. In this learning model, split points of decision nodes are determined by ABC in a way that the prediction accuracy would be maximized. The performance of the proposed method has been evaluated in two different teaching environments. The performance of the proposed method has been evaluated in two different teaching environments. The studied teaching environments are face-to-face (FF) and online classes that were held for middle school and university students, respectively. Based on the obtained results, the proposed method can predict the ETQ with an accuracy of more than 98.99% in both tested scenarios, which results in an increase of at least 1.11% compared to the previous methods. The efficiency of the proposed model in both studied scenarios prove the generality of this method to be used in real-world applications.

14.
J Mater Chem B ; 11(36): 8717-8731, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37646819

ABSTRACT

Chemodynamic therapy as a novel type of chemotherapy can damage the DNA structures and induce cell apoptosis and immunogenic cell death (ICD) through generating reactive oxygen species (ROS) to aggravate oxidative stress. Nonetheless, as an intrinsic antioxidative response of tumor cells, the expression of glutathione (GSH) can be upregulated to maintain the cellular redox balance and protect the tumor cells from ROS-mediated damage. In this context, it is feasible to simultaneously boost ROS generation and GSH depletion in tumor cells; however, the precise delivery and release of GSH scavengers at specific subcellular sites is of great importance. Herein, we propose a GSH-responsive mesoporous organosilica nanoparticle (MON)-based nanomedicine MON-CA-TPP@HA through sequentially covalently attaching triphenylphosphine (TPP) and electrostatically coating hyaluronic acid (HA) onto the surface of cinnamaldehyde (CA)-loaded MONs, known as MON-CA-TPP@HA, which has been demonstrated to be an extremely effective therapeutic strategy for cancer treatment through inducing ICD and apoptosis of breast cancer cells. Systematic in vitro experimental results clearly revealed that the nanomedicine can actively target the tumor cells with the help of HA, subsequently enter the tumor cells, and precisely bind with the mitochondria through TPP residues. Upon cleavaging the disulfide bond in the MONs triggered by over-expressed GSH within tumors, the CA molecules can be released inducing the excessive ROS in situ surrounding the mitochondria to activate oxidative stress to induce apoptosis and ICD of breast cancer cells. The results of the in vivo experiments confirm that the MON-CA-TPP@HA nanomedicine can effectively promote dendritic cell (DC) maturation and CD 8+ T cell activation and regulate the ratio of M1/M2 macrophages, which improve tumor immunosuppressive microenvironment. It is thus believed that the current nanomedicine has paved a new way for future cancer therapy.


Subject(s)
Breast Neoplasms , Immunotherapy , Humans , Female , Reactive Oxygen Species , Glutathione , Hyaluronic Acid , Breast Neoplasms/drug therapy , Tumor Microenvironment
15.
Acta Biomater ; 169: 500-516, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37574157

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) encompasses a spectrum of chronic liver diseases, including steatohepatitis, cirrhosis, and liver cancer. Despite the increasing prevalence and severity of MAFLD, no approved pharmacological interventions are currently available. Hypoxia-inducible factor-1α (HIF-1α) has emerged as a crucial early mediator in the pathogenesis of MAFLD. Previously, we demonstrated the potent anti-inflammatory properties of the nano-designed carbon monoxide (CO) donor, styrene maleic acid copolymer (SMA) encapsulating CO-releasing molecule (SMA/CORM2), which effectively suppressed HIF-1α in various inflammatory disorders. Here, we investigated the therapeutic potential of SMA/CORM2 in a mouse model of MAFLD induced by a high-fat methionine- and choline-deficient (HF-MCD) diet. Following 4 weeks of HF-MCD diet consumption, we observed pronounced hepatic lipid accumulation accompanied by disrupted lipid metabolism, polarization of macrophages towards the pro-inflammatory M1 phenotype, activation of the NLRP3 inflammasome, and upregulation of the TGF-ß fibrosis signaling pathway. Notably, the early and upstream event driving these pathological changes was the upregulation of HIF-1α. Treatment with SMA/CORM2 (10 mg/kg, three times per week) led to a significant increase in CO levels in both the circulation and liver, resulting in remarkable suppression of HIF-1α expression even before the onset of apparent pathological changes induced by the HF-MCD diet. Consequently, SMA/CORM2 administration exerted a significantly protective and therapeutic effect on MAFLD. In vitro studies using hepatocytes treated with high concentrations of fatty acids further supported these findings, as knockdown of HIF-1α using short hairpin RNA (shRNA) elicited similar effects to SMA/CORM2 treatment. Collectively, our results highlight the therapeutic potential of SMA/CORM2 in the management of MAFLD through suppression of HIF-1α. We anticipate that SMA/CORM2, with its ability to modulate HIF-1α expression, may hold promise for future applications in the treatment of MAFLD. STATEMENT OF SIGNIFICANCE: Carbon monoxide (CO) is a crucial gaseous signaling molecule that plays a vital role in maintaining homeostasis and is a potential target for treating many inflammatory diseases. Developing drug delivery systems that can deliver CO stably and target specific tissues is of great interest. Our team previously developed a nano micellar CO donor, SMA/CORM2, which exhibits superior bioavailability to native CORM2 and shows therapeutic potential in many inflammatory disease models. In this study, we showed that SMA/CORM2, through controlled CO release, significantly ameliorated steatohepatitis and liver fibrosis induced by an HF-MCD diet by suppressing an HIF-1α mediated inflammatory cascade. These findings provide new insight into the anti-inflammatory function of CO and a promising approach for controlling metabolic-associated fatty liver disease.


Subject(s)
Carbon Monoxide , Non-alcoholic Fatty Liver Disease , Mice , Animals , Carbon Monoxide/pharmacology , Micelles , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , RNA, Small Interfering/metabolism , Anti-Inflammatory Agents
16.
Int J Surg ; 109(9): 2574-2584, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37222675

ABSTRACT

BACKGROUND: The overall prognosis of primary mediastinal germ cell tumors (PMGCTs) is poor and the associated prognostic factors are not fully understood. Our goal was to investigate the prognostic factors of PMGCTs and to develop a validated prognostic prediction model. MATERIALS AND METHODS: A total of 114 PMGCTs with specific pathological types were included in this study. Clinicopathological characteristics of nonseminomatous PMGCTs and mediastinal seminomas were compared using the χ2 or Fisher's exact test. Independent prognostic factors of nonseminomatous PMGCTs screened using the univariate and multivariate Cox regression analysis were then used to generate a nomogram. The predictive performance of the nomogram was evaluated using the concordance index, decision curve, and the area under the receiver operating characteristic curve (AUC) and validated by bootstrap resampling. The Kaplan-Meier curves of independent prognostic factors were analyzed. RESULTS: This study included 71 cases of nonseminomatous PMGCTs and 43 cases of mediastinal seminomas. The 3-year overall survival rates for nonseminomatous PMGCTs and mediastinal seminomas patients were 54.5 and 97.4%, respectively. The overall survival prognostic nomogram for nonseminomatous PMGCTs was established by integrating independent prognostic factors, including the Moran-Suster stage, white blood cell, hemoglobin, and platelet-lymphocyte ratio. The nomogram demonstrated good performance with a concordance index of 0.760 and the 1-year and 3-year AUC values of 0.821 and 0.833, respectively. These values were better than those of the Moran-Suster stage system. The bootstrap validation had an AUC of 0.820 (0.724-0.915) and showed a well-fitting calibration curve. Besides, patients with mediastinal seminomas showed favorable clinical outcomes and all the nine patients received neoadjuvant therapy and postoperative surgery achieved pathological complete response. CONCLUSION: A nomogram based on staging and blood routine examination results was established to accurately and consistently predict the prognosis of patients with nonseminomatous PMGCTs.


Subject(s)
Mediastinal Neoplasms , Neoplasms, Germ Cell and Embryonal , Seminoma , Testicular Neoplasms , Humans , Male , Prognosis , Mediastinal Neoplasms/therapy , Nomograms , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/therapy
17.
NPJ Vaccines ; 8(1): 72, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37210376

ABSTRACT

Mycobacterium avium subspecies paratuberculosis (MAP) causes paratuberculosis (PTB), which is a granulomatous enteritis in ruminants that threatens the dairy industry's healthy development and public health safety worldwide. Because the commercial inactivated vaccines are not completely protective and interfere with bovine tuberculosis diagnostics, we tested four fusion proteins, namely 66NC, 66CN, 90NC, and 90CN, which were constructed with MAP3527, Ag85B, and Hsp70 of MAP in different tandem combinations. Notably, 66NC, which encodes a 66 kDa fusion protein that combines in linear order MAP3527N40-232, Ag85B41-330, and MAP3527C231-361, induced a powerful and specific IFN-γ response. Immunization of C57BL/6 mice with the 66NC fusion protein formulated in Montanide ISA 61 VG adjuvant generated robust Th1, Th2, and Th17 type immune responses and strong antibody responses. The 66NC vaccine protected C57BL/6 mice against virulent MAP K-10 infection. This resulted in a reduction of bacterial load and improvement of pathological damage in the liver and intestine, in addition to a reduction of body weight loss; significantly better protection than the reported 74 F vaccine was also induced. Furthermore, vaccine efficacy correlated with the levels of IFN-γ-, TNF-α-, and IL-17A-secreting antigen-specific CD4+ and CD8+ T lymphocytes as well as with serum IFN-γ and TNF-α levels after vaccination. These results demonstrate that recombinant protein 66NC is an efficient candidate for further development into a protective vaccine in terms of inducing specific protection against MAP.

18.
Front Microbiol ; 14: 1100873, 2023.
Article in English | MEDLINE | ID: mdl-37025624

ABSTRACT

As the second leading cause of cancer worldwide, colorectal cancer (CRC) is associated with a poor prognosis. Although recent studies have explored prognostic markers in patients with CRC, whether tissue microbes carry prognostic information remains unknown. Here, by assessing the colorectal tissue microbes of 533 CRC patients, we found that Proteobacteria (43.5%), Firmicutes (25.3%), and Actinobacteria (23.0%) dominated the colorectal tissue microbiota, which was different from the gut microbiota. Moreover, two clear clusters were obtained by clustering based on the tissue microbes across all samples. By comparison, the relative abundances of Proteobacteria and Bacteroidetes in cluster 1 were significantly higher than those in cluster 2; while compared with cluster 1, Firmicutes and Actinobacteria were more abundant in cluster 2. In addition, the Firmicutes/Bacteroidetes ratios in cluster 1 were significantly lower than those in cluster 2. Further, compared with cluster 2, patients in cluster 1 had relatively poor survival (Log-rank test, p = 0.0067). By correlating tissue microbes with patient survival, we found that the relative abundance of dominant phyla, including Proteobacteria, Firmicutes, and Bacteroidetes, was significantly associated with survival in CRC patients. Besides, the co-occurrence network of tissue microbes at the phylum level of cluster 2 was more complicated than that of cluster 1. Lastly, we detected some pathogenic bacteria enriched in cluster 1 that promote the development of CRC, thus leading to poor survival. In contrast, cluster 2 showed significant increases in the abundance of some probiotics and genera that resist cancer development. Altogether, this study provides the first evidence that the tissue microbiome of CRC patients carries prognostic information and can help design approaches for clinically evaluating the survival of CRC patients.

19.
BMC Med Imaging ; 23(1): 56, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37060061

ABSTRACT

BACKGROUND: Identifying thyroid nodules' boundaries is crucial for making an accurate clinical assessment. However, manual segmentation is time-consuming. This paper utilized U-Net and its improved methods to automatically segment thyroid nodules and glands. METHODS: The 5822 ultrasound images used in the experiment came from two centers, 4658 images were used as the training dataset, and 1164 images were used as the independent mixed test dataset finally. Based on U-Net, deformable-pyramid split-attention residual U-Net (DSRU-Net) by introducing ResNeSt block, atrous spatial pyramid pooling, and deformable convolution v3 was proposed. This method combined context information and extracts features of interest better, and had advantages in segmenting nodules and glands of different shapes and sizes. RESULTS: DSRU-Net obtained 85.8% mean Intersection over Union, 92.5% mean dice coefficient and 94.1% nodule dice coefficient, which were increased by 1.8%, 1.3% and 1.9% compared with U-Net. CONCLUSIONS: Our method is more capable of identifying and segmenting glands and nodules than the original method, as shown by the results of correlational studies.


Subject(s)
Neural Networks, Computer , Thyroid Nodule , Humans , Image Processing, Computer-Assisted/methods , Thyroid Nodule/diagnostic imaging , Ultrasonography/methods
20.
Eur J Pharm Sci ; 184: 106413, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36863618

ABSTRACT

Acetaminophen (APAP) overdose-induced hepatotoxicity is the most common cause of acute liver failure. Excessive generation of reactive oxygen species (ROS) and inflammatory responses are the major causes of necrosis and/or necroptosis of the liver cells. Currently, the treatment options for APAP-induced liver injury are very limited, N-acetylcysteine (NAC) is the only approved drug to treat APAP overdose patients. It is of great necessity to develop new therapeutic strategies. In a previous study, we focused on the anti-oxidative, anti-inflammatory signal molecule carbon monoxide (CO), and developed a nano-micelle encapsulating CO donor, i.e., SMA/CORM2. Administration of SMA/CORM2 to the mice exposed to APAP significantly ameliorated the liver injury and inflammatory process, in which modulating macrophage reprogramming plays a critical role. Along this line, in this study, we investigated the potential effect of SMA/CORM2 on toll-like receptor 4 (TLR4) and high mobility group protein B1 (HMGB1) signaling pathways that are known to be closely involved in many inflammatory responses and necroptosis. In a mouse APAP-induced liver injury model, similar to the previous study, SMA/CORM2 at 10 mg/kg remarkably improved the condition of the liver after injury as evidenced by histological examination and liver function. During the process of liver injury triggered by APAP, TLR4 expression gradually increased over time, and it was significantly upregulated as early as 4 h after APAP exposure, whereas, an increase of HMGB1 was a late-stage event. Notably, SMA/CORM2 treatment suppressed significantly both TLR4 and HMGB1, consequently inhibiting the progression of inflammation and liver injury. Compared to CORM2 without SMA modification (native CORM2) of 1 mg/kg that is equivalent to 10 mg/kg of SMA/CORM2 (the amount of CORM2 in SMA/CORM2 is 10% [w/w]), SMA/CORM2 exhibited a much better therapeutic effect, indicating its superior therapeutic efficacy to native CORM2. These findings revealed that SMA/CORM2 protects against APAP-induced liver injury via mechanisms involving the suppression of TLR4 and HMGB1 signaling pathways. Taking together the results in this study and previous studies, SMA/CORM2 exhibits great therapeutic potential for APAP overdose-induced liver injury, we thus anticipate the clinical application of SMA/CORM2 for the treatment of APAP overdose, as well as other inflammatory diseases.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , HMGB1 Protein , Animals , Mice , Acetaminophen , Anti-Inflammatory Agents/pharmacology , Carbon Monoxide/metabolism , Carbon Monoxide/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Disease Models, Animal , HMGB1 Protein/metabolism , Liver/metabolism , Mice, Inbred C57BL , Micelles , Signal Transduction , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...