Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(3): eadk2081, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38232167

ABSTRACT

Cu/ZnO/Al2O3 catalysts used to synthesize methanol undergo extensive deactivation during use, mainly due to sintering. Here, we report on formulations wherein deactivation has been substantially reduced by the targeted use of a small quantity of a Si-based promoter, resulting in accrued activity benefits that can exceed a factor of 1.8 versus unpromoted catalysts. This enhanced stability also provides longer lifetimes, up to double that of prior generation catalysts. Detailed characterization of a library of aged catalysts has allowed the most important deactivation mechanisms to be established and the chemical state of the silicon promoter to be identified. We show that silicon is incorporated within the ZnO lattice, providing a pronounced improvement in the hydrothermal stability of this component. These findings have important implications for sustainable methanol production from H2 and CO2.

2.
ACS Catal ; 12(10): 6180-6190, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35633901

ABSTRACT

The mechanism and dynamics of the CO2 reduction reaction (CO2RR) remain poorly understood, which is largely caused by mass transport limitations and lack of time-correlated product analysis tools. In this work, a custom-built gas accessible membrane electrode (GAME) system is used to comparatively assess the CO2RR behavior of Au and Au-Cu catalysts. The platform achieves high reduction currents (∼ - 50 mA cm-2 at 1.1 V vs RHE) by creating a three-phase boundary interface equipped with an efficient gas-circulation pathway, facilitating rapid mass transport of CO2. The GAME system can also be easily coupled with many other analytical techniques as exemplified by mass spectrometry (MS) and localized ultramicroelectrode (UME) voltammetry to enable real-time and in situ product characterization in the gas and liquid phases, respectively. The gaseous product distribution is explicitly and quantitatively elucidated with high time resolution (on the scale of seconds), allowing for the independent assessment of Tafel slope estimates for the hydrogen (159/168 mV decade-1), ethene (160/170 mV decade-1), and methane (96/100 mV decade-1) evolution reactions. Moreover, the UME is used to simultaneously measure the local pH shift during CO2RR and assess the production of liquid phase species including formate. A positive shift of 0.8 pH unit is observed at a current density of -11 mA cm-2 during the CO2RR.

SELECTION OF CITATIONS
SEARCH DETAIL
...