Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(7): 10673-10688, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200198

ABSTRACT

Previous studies have shown a strong linear correlation between the common hydraulic indicators of free water surface constructed wetlands (FWS CWs), which results in the waste of computing resources and confusion in evaluating the hydraulic performance of FWS CWs. There is an urgent need to define a relatively independent and authoritative hydraulic indicator. In this study, based on three years' data, the correlations among five representative hydraulic indicators, that is, short-circuit index (φ10), Morrill dispersion index (MDI), effective volume ratio (e), moment index (MI), and hydraulic efficiency (λe), were analyzed by combining a variety of methods. The results of the correlation analysis and principal component analysis clearly showed the positive correlations among φ10, e, MI, and λe (p < 0.01), and the strong negative correlations between MDI and the remaining four indexes, which were further confirmed by redundancy analysis (RDA). Most importantly, the significant correlations between MI vs e and φ10 vs e were proved through rigorous mathematical reasoning for the first time. Besides, the results of RDA indicated that the studied design parameters, namely, water depth, hydraulic loading rate, plant spacing, aspect ratio, layout of inlet and outlet, and plant species, could generally explain the variation in hydraulic indicators. The layout of inlet and outlet displayed positive effects on hydraulic performance, and the water depth exhibited negative effects. Combining the clarity of physical meaning, convenience of calculation, and universality of reflecting both hydraulic and treatment performances, e was recommended as the most authoritative hydraulic indicator to evaluate hydraulic performance. The clustering results based on e were highly consistent with those based on the comprehensive principal component score. Wetlands with a combination of lower water depth and better layout of inlet and outlet usually have better hydraulic performance. This study successfully revealed the significant correlations among hydraulic indicators and their sources, and recommended a unique hydraulic indicator to authoritatively evaluate the hydraulic performance of FWS CWs.


Subject(s)
Water Purification , Wetlands , Waste Disposal, Fluid/methods , Water Purification/methods , Water , Plants
2.
Chemosphere ; 344: 140326, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37777091

ABSTRACT

Optimizing water and nitrogen management to minimize NH3 volatilization from paddy fields has been extensively studied. However, there is limited research on the combined effect of different rates of organic fertilizer substitution (OFS) and irrigation methods in rice cultivation, exploring an effective water and nitrogen combination is beneficial to mitigate NH3 volatilization. To address this gap, we conducted a two-year field experiment to investigate NH3 volatilization under different OFS rates (0%, 25%, and 50%) combined with continuous flooding irrigation (CF) and alternate wet and dry irrigation (AWD). Our findings revealed that NH3 fluxes exhibited similar emission patterns after each fertilization event and significantly decreased with increasing rates of OFS during the basal stage. Compared to no substitution (ON0), the low (ON25) and high (ON50) rates of OFS reduced cumulative NH3 emissions by 18.9% and 16.6%, and lowed NH3 emission factors (EFs) by 26.7% and 23.3%, respectively. Although OFS resulted in a slight reduction in rice yield, yield-scaled NH3 emissions were significantly reduced by 11.9% and 6.5% under the low and high substitution rates, respectively. This reduction was mainly attributed to the slight yield reduction observed at the low substitution rate. Furthermore, when combined with ON0, AWD irrigation had the potential to increase NH3 volatilization. However, this increase was not observed when combined with ON25 and ON50. During each fertilization stage, floodwater + concentration emerged as the prominent environmental factor influencing NH3 volatilization, showing a stronger and more positive correlation compared to other factors such as floodwater pH, soil pH, and NH4+ concentration. Based on our findings, we recommend implementing effective water and nitrogen management strategies to minimize NH3 volatilization in rice cultivation. This involves applying a lower rate of organic fertilizer substitution during the basal stage, maintaining high water levels during fertilization, and implementing mild AWD irrigation during non-fertilization periods.


Subject(s)
Ammonia , Oryza , Ammonia/analysis , Fertilizers/analysis , Volatilization , Soil , Nitrogen/analysis , Water , Agriculture
3.
J Environ Manage ; 344: 118372, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37343474

ABSTRACT

Alternate wet and dry (AWD) irrigation and organic fertilizers substitution (OFS) have contrasting effects on CH4 and N2O emissions in rice cultivation. Combining these two practices may be feasible for simultaneous reduction of CH4 and N2O emission from paddy. Hence, we conducted a two-year field experiment to explore the reduction of greenhouse gases under the combination of AWD and OFS. The field experiment which was designed with two irrigation methods (continuous flooding (CF) irrigation and AWD irrigation), and five nitrogen regimes (N0, N135, and N180 represent 0, 135, and 180 kg N ha-1, respectively, ON25 and ON50 represent 25% and 50% OFS for inorganic fertilizer, respectively). The results showed a single-peak emission for CH4 fluxes during the whole rice growing season in all water and nitrogen treatments while the N2O fluxes peak only observed during tillering period with AWD irrigation. AWD irrigation and OFS showed a limited reduction in global warming potential (GWP). These were owing to that AWD irrigation reduced 38.3% CH4 emissions while increase 145.9% N2O emissions when compared to CF irrigation, and the low rate (25%) OFS only reduced CH4 emission by 29.4% while high rate (50%) only reduce N2O emission by 38.8% when compared to conventional inorganic nitrogen fertilizer (N180). Combined AWD and ON25 could maximize the reduction in GWP and yield-scaled GWP, which were reduce 58.0% and 52.5%, respectively, compare to the conventional water and nitrogen management (CF and N180). Furthermore, the structural equation modelling (SEM) indicated that the soil dissolved organic carbon (DOC) and rice aboveground biomass showed a significant positive effect on CH4 fluxes while soil NH4+ with a negative effect, and the soil NH4+, nitrification potential, denitrification potential significant affected N2O fluxes with a positive effect while DOC with a negative effect. These results investigated that 25% OFS rate for inorganic fertilizer could further reduce warming potential in AWD irrigation rice field.


Subject(s)
Greenhouse Gases , Oryza , Greenhouse Gases/analysis , Fertilizers/analysis , Methane/analysis , Nitrous Oxide/analysis , Soil/chemistry , Nitrogen/analysis , Water , Agriculture/methods , China
4.
J Environ Manage ; 337: 117745, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36965370

ABSTRACT

Quantitative prediction of the design parameter-influenced hydraulic performance is significant for optimizing free water surface constructed wetlands (FWS CWs) to reduce point and non-point source pollution and improve land utilization. However, owing to limitations of the test conditions and data scale, a quantitative prediction model of the hydraulic performance under multiple design parameters has not yet been established. In this study, we integrated field test data, mechanism model, statistical regression, and machine learning (ML) to construct such quantitative prediction models. A FWS CW numerical model was established by integrating 13 groups of trace data from field tests. Subsequently, training, test and extension datasets comprising 125 (5^3), 25 (L25(56)) and 16 (L16(44)) data points, respectively, were generated via numerical simulation of multi-level value combination of three quantitative design parameters, namely, water depth, hydraulic loading rate (HLR), and aspect ratio. The short circuit index (φ10), Morrill dispersion index (MDI), hydraulic efficiency (λ) and moment index (MI) were used as representative hydraulic performance indicators. Training set with large samples were analyzed to determine the variation rules of different hydraulic indicators. Based on the control variable method, φ10, λ, and MI grew exponentially with increasing aspect ratio whereas MDI showed a decreasing trend; with increasing water depth, φ10, λ, and MI showed polynomial decreases whereas MDI increased; with increasing HLR, φ10, λ, and MI slowly increased linearly whereas MDI showed the opposite trend. Finally, we constructed models based on multivariate nonlinear regression (MNLR) and ML (random forest (RF), multilayer perceptron (MLP), and support vector regression. The coefficients of determination (R2) of the MNLR and ML models fitting the training and test sets were all greater than 0.9; however, the generalization abilities of different models in the extension set were different. The most robust MLP, MNLR without interaction term, and RF models were recommended as the preferred models to hydraulic performance prediction. The extreme importance of aspect ratio in hydraulic performance was revealed. Thus, gaps in the current understanding of multivariate quantitative prediction of the hydraulic performance of FWS CWs are addressed while providing an avenue for researching FWS CWs in different regions according to local conditions.


Subject(s)
Waste Disposal, Fluid , Wetlands , Waste Disposal, Fluid/methods , Computer Simulation , Machine Learning , Water
5.
Huan Jing Ke Xue ; 44(3): 1572-1582, 2023 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-36922218

ABSTRACT

Paddy fields are complex ecosystems that both emit CH4 and absorb CO2, which plays an important role in the global water-carbon cycle and carbon budget. In this study, the CH4 fluxes and CO2 fluxes of double-cropping direct-seeded rice fields in 2020 in the Poyang Lake Plain were obtained using the eddy covariance method, and the variation characteristics, accumulation in the whole growth period, and comprehensive greenhouse effects of two greenhouse gases were quantitatively revealed. The results showed that, the double-cropping direct-seeded rice field in Poyang Lake Plain was the source of CH4 emission, and the emission during the whole growth period was 52.6 g·m-2, with an average daily emission of 0.208 g·(m2·d)-1. CH4 emission and daily average emission in the early rice season were 20.7 g·m-2 and 0.188 g·(m2·d)-1, respectively, which were lower than the emissions of 31.9 g·m-2 and 0.255 g·(m2·d)-1 in the late rice season. CH4 flux had significant seasonal variation characteristics. The strong emission period (emission peak) of CH4 was concentrated in the middle growth stage of early rice and the early growth stage of late rice. A total of 85.5% of CH4 in the early rice season and 92.1% of CH4 in the late rice season were released during the strong emission periods, and seasonal peak values were 0.638 g·(m2·d)-1 and 1.282 g·(m2·d)-1, respectively. The diurnal variation characteristics of CH4 flux showed three types:obvious unimodal type, non-obvious unimodal type, and irregular type. The strong emission period was mainly the unimodal type, and the peak values of 0.453 µmol·(m2·s)-1 in the early rice season and 0.977 µmol·(m2·s)-1 in the late rice season appeared at 14:00-15:00 and maintained a high emission rate at 12:30-16:00. The CO2 accumulation in the whole growth period of early rice and late rice was -990.4 g·m-2 and -1156.6 g·m-2, respectively, and the total was -2147.0 g·m-2. The comprehensive greenhouse effect of CH4 emission and CO2 exchange in the double-cropping paddy field was -673.6 g·m-2 (calculated using the CO2 equivalent), which showed a cooling effect. Excluding CH4 emissions when evaluating the greenhouse effect of the paddy field, the CO2 equivalent emission of 1473.4 g·m-2 would be underestimated, accounting for 68.6% of the net CO2 absorption. Considering CH4 emissions, CO2 exchanges, and carbon emissions caused by rice harvest, the two-season direct seeding paddy field in Poyang Lake Plain was the source of greenhouse gas emissions.

6.
J Environ Manage ; 331: 117348, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36706603

ABSTRACT

The most commonly used model in constructed wetlands is the first-order removal model, and first order kinetic constants (k) are the key parameters. The presumption is often made that k are constants. However, it is possible that k are functions of operating conditions, but the influence of operation conditions on k is unclear. In this study, response surface methodology was used to explore the variation patterns of ka (area rate constants) and kV (volume rate constants) for the removal of total nitrogen (TN) and total phosphorus (TP) in free water surface (FWS) wetlands. The experimental variables included hydraulic loading rate (HLR), water depth, and inlet concentration (Cin). The results showed that kV was more variable than ka, and the area-based first-order model is more suitable for simulating TN and TP in FWS wetlands. Inlet concentration (Cin) was significant for ka; Cin and water depth were significant for kV; HLR and the interaction between factors were insignificant. The effects of Cin on ka and kV can be described by an upward convex quadratic curve, while the effect of water depth on kV demonstrates a downward convex quadratic curve. The first-order area rate constant for TN removal was given by k = -47.66 + 22.01 Cin - 1.154 Cin2; the first-order area rate constant for TP removal was given by k = -27.75 + 95.88 Cin - 30.73 Cin2. Based on the variation patterns, the traditional k-C model was modified to the kψ-C model. The kψ-C model produced the best results at simulating the outlet concentration and removal efficiency (RE).


Subject(s)
Waste Disposal, Fluid , Water Purification , Waste Disposal, Fluid/methods , Water Purification/methods , Wetlands , Nitrogen , Phosphorus , Water
7.
Sci Total Environ ; 859(Pt 1): 159917, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36343815

ABSTRACT

Quantification of regional methane (CH4) gas emission in the paddy fields is critical under climate warming. Mechanism models generally require numerous parameters while empirical models are too coarse. Based on the mechanism and structure of the widely used model CH4MOD, a GIS-based Regional CH4 Emission Calculation (GRMC) method was put forward by introducing multiple sources of remote sensing images, including MOD09A1, MOD11A2, MOD15A2H as well as local water management standards. The stress of soil moisture condition (f(water)) on CH4 emissions was quantified by calculating the redox potential (Eh) from days after flooding or falling dry. The f(water)-t curve was calculated under different exogenous organic matter addition. Combining the f(water)-t curve with local water management standards, the seasonal variation of f(water) was obtained. It was proven that f(water) was effective in reflecting the regulation role of soil moisture condition. The GRMC was tested at four Eddy Covariance (EC) sites: Nanchang (NC) in China, Twitchell (TWT) in the USA, Castellaro (CAS) in Italy and Cheorwon (CRK) in Korea and has been proven to well track the seasonal dynamics of CH4 emissions with R2 ranges of 0.738-0.848, RMSE ranges of 31.94-149.22 mg C/m2d and MBE ranges of -66.42- -14.79 mg C/m2d. The parameters obtained in Nanchang (NC) site in China were then applied to the Ganfu Plain Irrigation System (GFPIS), a typical rice planting area of China, to analyse the spatial-temporal variations of CH4 emissions. The total CH4 emissions of late rice in the GFPIS from 2001 to 2013 was in the range of 14.47-20.48 (103 t CH4-C). Ts caused spatial variation of CH4 production capacity, resulting in the spatial variability of CH4 emissions. Overall, the GRMC is effective in obtaining CH4 emissions from rice fields on a regional scale.


Subject(s)
Methane , Oryza , Methane/analysis , Agriculture/methods , Soil/chemistry , Water , China , Nitrous Oxide/analysis
8.
J Environ Manage ; 309: 114694, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35182978

ABSTRACT

Optimizing the design and operation parameters of free water surface constructed wetlands (FWS CWs) in runoff regulation and wastewater treatment is necessary to improve the comprehensive performance. In this study, nine machine learning (ML) algorithms were successfully developed to optimize the parameter combinations for FWS CWs. The scale effect of surface area on wetland performance was determined based on consistently smaller predictions (-6.2% to -28.9%) of the nine well-established ML algorithms. The models most suitable for FWS CW performance simulation and prediction were random forest and extra trees algorithms because of their high R2 values (0.818 in both) with the training set and low mean absolute relative errors (4.7% and 3.8%, respectively) with the test set. Results from feature analysis of the six tree-based algorithms emphasized the importance of water depth and layout of inlet and outlet, and revealed the negligible effect of the aspect ratio. Feature importance and partial dependence analysis enhanced the interpretability of the tree-based algorithms. The proposed ML algorithms enabled the implementation of an extended scenario at a low cost in real time. Therefore, ML algorithms are suitable for expressing the complex and uncertain effects of the design and operation parameters on the performance of FWS CWs. Acquiring datasets consisting of more extensive, uniform, and unbiased parameter combinations is crucial for developing more robust and practical ML algorithms for the optimal design of FWS CWs.


Subject(s)
Water Purification , Wetlands , Computer Simulation , Machine Learning , Waste Disposal, Fluid/methods , Wastewater , Water , Water Purification/methods
9.
Environ Sci Pollut Res Int ; 29(14): 20617-20631, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34739671

ABSTRACT

The freshwater environment of watersheds in the Tibetan Plateau is bound with the safety of the Asian Water Tower. In this study, nitrogen (N) and phosphorus (P) loads delivered to freshwater and the associated gray water footprint (GWF) in the agriculture, tourism, domestic life, and industrial sectors were estimated to assess the seasonal and annual characteristics of the water pollution levels (WPLs) in the Lhasa River Basin from 2006 to 2018, and WPL calculations were compared with actual water quality measurements from 2017 to 2018. We found that more than 90% of the GWF came from anthropogenic sources. From the perspective of the whole basin, domestic life was the largest contributor to both N-related GWFs (52%) and P-related GWFs (50%), followed by agriculture for N-related GWFs (32%) and tourism industry for P-related GWFs (30%). The N emissions into the freshwater environment exceeded the maximum assimilation capacity of the watersheds in individual years at both seasonal and annual scales, while P emissions were completely within the pollution assimilative capacity. Besides, we found the serious N pollution near irrigation areas at the seasonal scale (WPL = 2.7 and TN = 1.11 mg/L). The prosperity of tourism has led to a tenfold increase in N-related GWFs and a fivefold increase in P-related GWFs for the tourism industry near the Lhasa city. The strict top-down unified management for ecological environmental protection in plateaus may be an effective method.


Subject(s)
Rivers , Water Pollutants, Chemical , Agriculture , China , Environmental Monitoring/methods , Nitrogen/analysis , Tibet , Water Pollutants, Chemical/analysis , Water Pollution/analysis
10.
J Environ Manage ; 305: 114334, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34953224

ABSTRACT

Optimizing the hydraulic performance of free water surface constructed wetlands (FWS CWs) is of great economic and ecological value. However, there is a complex nonlinear relationship between the hydraulic performance and design parameters of FWS CWs. In this study, an artificial neural network (ANN) was applied to simulate and predict the hydraulic performance corresponding to different combinations of design parameters, and orthogonal design L9 (34) was used to determine the optimal combination of the important hyperparameters of the ANN. Based on the convenient scenario prediction ability of ANN, sensitivity analysis of different design parameters was carried out by the control variate method and full factor experiment. The results showed that the combination of 3 hidden layers, 15 neural nodes in each hidden layer, 0.001 learning rate, and 8 batch sizes was optimal for the established ANN model, achieving a coefficient of determination of 0.828 in the validation set and a satisfactory prediction effect in the test set. The narrow feature distribution interval in the training set restricted the generalization ability of the ANN model to some extent. Of the four continuous design parameters, the water depth and aspect ratio had an important influence on the effective volume ratio. The layout of inlet and outlet was the most influential design parameter, as confirmed by the full factor experiment of five factors and four levels. The established ANN allowed real-time implementation in an extended scenario at a low cost. This study suggests that the ANN can simultaneously project complex and uncertain effects of several design parameters on wetland performance. In future research, acquiring further comprehensive, impartial, and unbiased experimental datasets is necessary to establish a more robust and generalizing ANN model that can guide the optimal design of FWS CWs.


Subject(s)
Water Purification , Wetlands , Neural Networks, Computer , Uncertainty , Water
11.
Bioresour Technol ; 327: 124817, 2021 May.
Article in English | MEDLINE | ID: mdl-33578355

ABSTRACT

To unify the structures of solute transport and pollutant degradation models and evaluate the wetland performance conveniently, a pollutant degradation model combining first-order kinetics with the hybrid solute transport model (plug flow with dispersion + continuous stirred-tank reactor, PFD + CSTR) was developed. Orthogonal tests revealed significant correlation between the model parameters, and the original models were optimized via linear substitution of parameters. The improved PFD + CSTR solute transport model exhibited a satisfactory fit with the original model, and the average relative errors of the determination coefficient (R2) and correlation coefficient were <5%. The multiple linear regressions between the hydraulic indicators and model parameters were reconstructed and exhibited consistent structures between different stages. The degradation constant kaTN between the original and improved models exhibited high consistency (R2 = 0.982). Conclusively, the improved models exhibited good consistency with the original models and allowed rapid and accurate performance evaluation.


Subject(s)
Environmental Pollutants , Water Purification , Waste Disposal, Fluid , Water , Wetlands
12.
Environ Sci Pollut Res Int ; 27(34): 43283-43295, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32737778

ABSTRACT

Solute transport models and hydraulic indicators are commonly used to assess the flow pattern of free water surface-constructed wetlands (FWS CWs). However, the relationship between solute transport models and hydraulic performance remains poorly understood. The hybrid model comprised of plug flow with dispersion and continuous stirred tank reactors (PFD + CSTRs) was applied in this study. The variation rules of model parameters, namely the flow ratio of the mixed zone f, volume ratio of the mixed zone z, dispersion number D, and number of mixed tanks N, were obtained by fitting of the normalized tracer data of orthogonal tests. The coefficients of determination (R2) exceeded 0.7 and the correlation coefficient (r) surpassed 0.8. The results demonstrated satisfactory hydraulic performance and purification effect, with high hydraulic and water quality indicators. Water depth was the principal design parameter negatively affecting f and z, whereas the layout of in- and outlet positively influenced D and N. The R2 of the model parameters f, z, and D on most hydraulic indicators were above 0.5. Significantly positive correlations existed between the model parameters f, z, and D and the hydraulic indicators including the short-circuit index φ10, effective volume ratio e, and moment index MI. The quantitative links between model parameters and hydraulic indicators were established. Based on the significant correlations between design parameters, hydraulic indicators, and model parameters, it would be more convenient to evaluate the hydraulic performance of FWS CWs corresponding to specific design parameters. Graphical abstract.


Subject(s)
Water Purification , Wetlands , Waste Disposal, Fluid , Water
14.
Sci Total Environ ; 742: 140570, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32721730

ABSTRACT

Land use and land cover change (LUCC) can alter land surface-atmosphere interactions in the exchange of energy fluxes, with additional consequences on temperature. Understanding the impacts of LUCC on the regional climate contributes to providing fundamental information for future land use planning and regional policy orientation, especially in extremely vulnerable and sensitive plateau regions. This study was designed to explore the regional climate effects associated with LUCC in the Lhasa River basin of Tibetan Plateau using the Weather Research and Forecasting (WRF) model, with a particular focus on near-surface air temperature (Ta) and surface energy fluxes. Two numerical experiments (Case 1980 and Case 2015) were simulated, spanning from November 2014 to November 2015 with the first month as spin-up. The results indicated that the conversion from croplands or grasslands to urban and built-up land led to a noticeable increase in Ta (0.23 °C) during summer. In areas converted from grasslands to waters, Ta decreased by 0.40 °C during spring and approximately 0.50 °C during winter. The afforestation activities at this scale had an obvious impact on the Ta in spring and winter, increasing by 0.20 °C and 0.10 °C, respectively. Generally, the latent heat flux (LE) and sensible heat flux (H) were more sensitive to land conversions, while changes in other fluxes seemed to be weaker. Due to the small change in net radiation (Rn) and ground heat flux (G), the H generally showed an opposite trend with that of LE. Urbanization and reservoir construction resulted in a decrease in the LE, while afforestation construction contributed to an increase in the LE. Our study highlights the impacts of current regional development in the plateau areas on the climate, especially in spring and winter. Urbanization led to a slight warming effect; the cooling effect was more significant in spring and winter than in summer after reservoir construction, and the current afforestation project contributed to a warming effect in winter. This study contributes to the future development of environmentally compatible and sustainable land strategies.

15.
Sci Total Environ ; 720: 137562, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32325579

ABSTRACT

This study reports the application of Soil and Water Assessment Tool (SWAT) within the Hydrologic and Water Quality System (HAWQS) on-line platform, for the Upper Mississippi River Basin (UMRB). The UMRB is an important ecosystem located in the north central U.S. that is experiencing a range of ecological stresses. Specifically, testing of SWAT was performed for: (1) Hargreaves (HG) and Penman-Monteith (PM) PET methods, and (2) Livneh, National Climatic Data Center (NCDC) and Parameter-elevation Regressions on Independent Slopes Model (PRISM) climate datasets. The Livneh-PM combination resulted in the highest average annual water yield of 380.6 mm versus the lowest estimated water yield of 193.9 mm for the Livneh-HG combination, in response to 23-year uncalibrated simulations. Higher annual ET and PET values were predicted with HG method versus the PM method for all three weather datasets in response to the uncalibrated simulations, due primarily to higher HG-based estimates during the growing season. Based on these results, it was found that the HG method is the preferred PET option for the UMRB. Initial calibration of SWAT was performed using the Livneh data and HG method for three Mississippi River main stem gauge sites, which was followed by spatial validation at 10 other gauge sites located within the UMRB stream network. Overall satisfactory results were found for the calibration and validation gauge sites, with the majority of R2 values ranging between 0.61 and 0.82, Nash-Sutcliffe modeling efficiency (NSE) values ranging between 0.50 and 0.79, and Kling-Gupta efficiency (KGE) values ranging between 0.61 and 0.84. The results of an additional experimental suite of six scenarios, which represented different combinations of climate data sets and calibrated parameters, revealed that suggested statistical criteria were again satisfied by the different scenario combinations. Overall, the PRISM data exhibited the strongest reliability for the UMRB.

16.
Bioresour Technol ; 280: 199-212, 2019 May.
Article in English | MEDLINE | ID: mdl-30772633

ABSTRACT

Orthogonal tests were performed to assess the effect of design parameters on hydraulic and treatment performances of constructed wetlands. The results showed that water depth, layout of in- and outlet, flow rate, and aspect ratio mainly affected hydraulic performance, and water depth, plant spacing, and layout of in- and outlet mainly affected treatment performance. Optimal integrated performance was achieved with combination of 20-30 cm water depth, five evenly distributed inlets and one middle outlet, a flow rate of 0.4-0.55 m3/h, 20-cm plant spacing, a 1.125:1 aspect ratio, and planted with Scripus tabernaemontani. The average treatment performances of 27.2%, 16.3%, and 30.7% removal rates were received for total nitrogen, total phosphorus, and total suspended solid, respectively. The design parameters that significantly influenced hydraulic performance did not significantly influence treatment performance. Various hydraulic and purification indicators displayed extremely significant correlations. There was a significant correlation between hydraulic performance and mass removal capacity.


Subject(s)
Wetlands , Nitrogen/analysis , Phosphorus/analysis , Physical Phenomena , Plants , Waste Disposal, Fluid/methods , Water
17.
Environ Sci Pollut Res Int ; 26(7): 6492-6502, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30623327

ABSTRACT

Eco-ditches (ecological ditches) not only drain water from rice paddies, but also facilitate the removal of nitrogen (N). We established an experiment with both static and flowing water in 2017 to observe N removal from rice paddy drainage by eco-ditches containing three different types of monoculture vegetation: Zizania aquatica, Canna indica L., and Pontederia cordata. Results showed that ammonia volatilization and plant uptake contributed little to N removal. Harvest of Z. aquatica from the eco-ditch during the late growing season had an appreciable effect on N removal. However, harvest of C. indica L. and P. cordata had negligible effects. During static test, the concentration of total N (TN) and ammonium N (NH4+-N) and the pH all decreased from the surface to the bottom of water. The concentration of nitrate N (NO3--N) did not exhibit stratification. In a flowing water experiment, ditches with Z. aquatica, C. indica L., and P. cordata had the following average removal rates: TN 15.8%, 11.6%, and 27.9%; NO3--N 4.2%, 8.4%, and 17.8%; NH4+-N 22.8%, 16.4%, and 37.5%, respectively. The removal rates of TN and NH4+-N decreased with the increase of water level, while that of NO3--N increased significantly. Nitrogen removal rates decreased with the increase of influent TN concentration or flow rate. Nitrogen removal rate of P. cordata ditch was highly dependent on the influent TN concentration, but the flow rate was not as important due to the great drag caused by its large density. While the contrary was observed in the C. indica L. ditch. For Z. aquatica ditch, both the flow rate and the TN concentration had a strong negative correlation with the N removal rate.


Subject(s)
Agriculture/methods , Denitrification , Nitrogen/analysis , Ammonia/analysis , Ammonium Compounds/analysis , Environmental Monitoring , Nitrates/analysis , Oryza
18.
Bioresour Technol ; 238: 461-471, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28475988

ABSTRACT

Orthogonal tests with mixed levels of design parameters of a free water surface flow constructed wetland were performed to assess their effect on hydraulic and treatment performance, and discover the relationship between the design parameters and the two performances. The results showed that water depth, plant spacing, and layout of in- and outlet mainly affected the two performances. Under 40cm depth, central pass of in- and outlet, 1.8m3/h flow rate, 20cm plant spacing, 2:1 aspect ratio, and Scripus tabernaemontani as the plant species, treatment performance of 5.3% TN, 6.1% TP and 15.6% TSS removal efficiencies and a high hydraulic performance of 0.854e, 0.602MI were achieved. There was no significant correlation between the design parameters and the two performances. The relationship among various hydraulic indicators and that among the purification indicators displayed extremely significant correlation. However, there was no significant correlation between hydraulic and treatment performance.


Subject(s)
Water Purification , Wetlands , Plants , Waste Disposal, Fluid , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...