Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol ; 114(11-12): 943-8, 2010.
Article in English | MEDLINE | ID: mdl-21036338

ABSTRACT

Viscous drag causes the rapid deceleration of fungal spores after high-speed launches and limits discharge distance. Stokes' law posits a linear relationship between drag force and velocity. It provides an excellent fit to experimental measurements of the terminal velocity of free-falling spores and other instances of low Reynolds number motion (Re<1). More complex, non-linear drag models have been devised for movements characterized by higher Re, but their effectiveness for modeling the launch of fast-moving fungal spores has not been tested. In this paper, we use data on spore discharge processes obtained from ultra-high-speed video recordings to evaluate the effects of air viscosity predicted by Stokes' law and a commonly used non-linear drag model. We find that discharge distances predicted from launch speeds by Stokes' model provide a much better match to measured distances than estimates from the more complex drag model. Stokes' model works better over a wide range projectile sizes, launch speeds, and discharge distances, from microscopic mushroom ballistospores discharged at <1 m s(-1) over a distance of <0.1mm (Re<1.0), to macroscopic sporangia of Pilobolus that are launched at >10 m s(-1) and travel as far as 2.5m (Re>100).


Subject(s)
Fungi/chemistry , Spores, Fungal/chemistry , Fungi/cytology , Models, Biological , Spores, Fungal/cytology , Viscosity
2.
Fungal Biol ; 114(8): 669-75, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20835365

ABSTRACT

Active discharge of basidiospores in most species of Basidiomycota is powered by the rapid movement of a droplet of fluid, called Buller's drop, over the spore surface. This paper is concerned with the operation of the launch mechanism in species with the largest and smallest ballistospores. Aleurodiscus gigasporus (Russulales) produces the largest basidiospores on record. The maximum dimensions of the spores, 34 × 28 µm, correspond to a volume of 14 pL and to an estimated mass of 17 ng. The smallest recorded basidiospores are produced by Hyphodontia latitans (Hymenochaetales). Minimum spore dimensions in this species, 3.5 × 0.5 µm, correspond to a volume of 0.5 fL and mass of 0.6 pg. Neither species has been studied using high-speed video microscopy, but this technique was used to examine ballistospore discharge in species with spores of similar sizes (slightly smaller than A. gigasporus and slightly larger than those of H. latitans). Extrapolation of velocity measurements from these fungi provided estimates of discharge distances ranging from a maximum of almost 2 mm in A. gigasporus to a minimum of 4 µm in H. latitans. These are, respectively, the longest and shortest predicted discharge distances for ballistospores. Limitations to the distances traveled by basidiospores are discussed in relation to the mechanics of the discharge process and the types of fruit-bodies from which the spores are released.


Subject(s)
Agaricales/chemistry , Basidiomycota/chemistry , Spores, Fungal/chemistry , Agaricales/cytology , Basidiomycota/cytology , Cell Size , Microscopy, Video , Models, Biological , Models, Theoretical , Spores, Fungal/cytology
3.
PLoS One ; 4(1): e4163, 2009.
Article in English | MEDLINE | ID: mdl-19129912

ABSTRACT

BACKGROUND: Spore discharge in the majority of the 30,000 described species of Basidiomycota is powered by the rapid motion of a fluid droplet, called Buller's drop, over the spore surface. In basidiomycete yeasts, and phytopathogenic rusts and smuts, spores are discharged directly into the airflow around the fungal colony. Maximum discharge distances of 1-2 mm have been reported for these fungi. In mushroom-forming species, however, spores are propelled over much shorter ranges. In gilled mushrooms, for example, discharge distances of <0.1 mm ensure that spores do not collide with opposing gill surfaces. The way in which the range of the mechanism is controlled has not been studied previously. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report high-speed video analysis of spore discharge in selected basidiomycetes ranging from yeasts to wood-decay fungi with poroid fruiting bodies. Analysis of these video data and mathematical modeling show that discharge distance is determined by both spore size and the size of the Buller's drop. Furthermore, because the size of Buller's drop is controlled by spore shape, these experiments suggest that seemingly minor changes in spore morphology exert major effects upon discharge distance. CONCLUSIONS/SIGNIFICANCE: This biomechanical analysis of spore discharge mechanisms in mushroom-forming fungi and their relatives is the first of its kind and provides a novel view of the incredible variety of spore morphology that has been catalogued by traditional taxonomists for more than 200 years. Rather than representing non-selected variations in micromorphology, the new experiments show that changes in spore architecture have adaptive significance because they control the distance that the spores are shot through air. For this reason, evolutionary modifications to fruiting body architecture, including changes in gill separation and tube diameter in mushrooms, must be tightly linked to alterations in spore morphology.


Subject(s)
Basidiomycota/metabolism , Spores, Fungal/physiology , Microscopy, Video/methods , Models, Biological , Models, Theoretical
4.
Photochem Photobiol ; 85(3): 774-82, 2009.
Article in English | MEDLINE | ID: mdl-19140896

ABSTRACT

Insight into the influence of UV-C radiation on the evolutionary relationship between prokaryotic and eukaryotic algae was studied in seven species of algae exposed to different UV-C irradiances. The order of their acclimation (from most tolerant to sensitive) is Synechococcus sp. PCC7942 (Cyanophyta), Synechocystis sp. PCC6803 (Cyanophyta), Chlorella protothecoides (Chlorophyta), Chlamydomonas reinhardtii (Chlorophyta), Phaeodactylum tricornutum (Bacillariophyta), Alexandrium tamarense (Pyrrhophyta) and Dicrateria zhanjiangensis (Chrysophyta). These results are in accordance with the algal evolution process that is generally accepted and proved by fossil record. It shows that UV-C radiation is an important environmental factor that cannot be ignored in the evolutionary process from prokaryotic algae to eukaryotic algae. The threshold of UV-C radiation at which prokaryotic algae can survive but eukaryotic algae cannot was found to be approximately 0.09 W m(-2). This was the first time to determine with precision the irradiance level at which UV-C contributed as a selection pressure of evolution. Furthermore, the effects of UV-C radiation on photosynthetic performance, growth rate and pigment content were investigated in two species of prokaryotic algae: Synechococcus sp. PCC7942 and Synechocystis sp. PCC6803, and two species of eukaryotic algae: C. reinhardtii and C. protothecoides. After 6 days of exposure, the contents of chlorophyll a and carotenoids decreased in all species, moreover reduction in C. reinhardtii and C. protothecoides was more obvious than in Synechococcus sp. PCC7942 and Synechocystis sp. PCC6803. The ability to photosynthesize followed the same trend as the pigments.


Subject(s)
Eukaryota/growth & development , Photosynthesis , Pigments, Biological/metabolism , Ultraviolet Rays , Eukaryota/classification , Eukaryota/metabolism , Eukaryota/physiology
5.
PLoS One ; 3(9): e3237, 2008 Sep 17.
Article in English | MEDLINE | ID: mdl-18797504

ABSTRACT

BACKGROUND: A variety of spore discharge processes have evolved among the fungi. Those with the longest ranges are powered by hydrostatic pressure and include "squirt guns" that are most common in the Ascomycota and Zygomycota. In these fungi, fluid-filled stalks that support single spores or spore-filled sporangia, or cells called asci that contain multiple spores, are pressurized by osmosis. Because spores are discharged at such high speeds, most of the information on launch processes from previous studies has been inferred from mathematical models and is subject to a number of errors. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have used ultra-high-speed video cameras running at maximum frame rates of 250,000 fps to analyze the entire launch process in four species of fungi that grow on the dung of herbivores. For the first time we have direct measurements of launch speeds and empirical estimates of acceleration in these fungi. Launch speeds ranged from 2 to 25 m s(-1) and corresponding accelerations of 20,000 to 180,000 g propelled spores over distances of up to 2.5 meters. In addition, quantitative spectroscopic methods were used to identify the organic and inorganic osmolytes responsible for generating the turgor pressures that drive spore discharge. CONCLUSIONS/SIGNIFICANCE: The new video data allowed us to test different models for the effect of viscous drag and identify errors in the previous approaches to modeling spore motion. The spectroscopic data show that high speed spore discharge mechanisms in fungi are powered by the same levels of turgor pressure that are characteristic of fungal hyphae and do not require any special mechanisms of osmolyte accumulation.


Subject(s)
Fungi/physiology , Spores, Fungal/physiology , Microscopy, Video/methods , Models, Biological , Models, Theoretical , Movement , Reproducibility of Results , Spectrophotometry/methods , Video Recording
6.
Arch Biochem Biophys ; 458(2): 220-8, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17239812

ABSTRACT

Glutaredoxins (Grxs) are small ubiquitous glutathione-disulfide oxidoreductase that reduce disulfide bonds of target proteins and maintain the redox homoeostasis of cells. Disruption of ssr2061 reduced the viability of cells indicated Grx2061 has a protective role against oxidative stress in Synechocystis sp. PCC 6803. To understand the function of Grx2061 in cyanobacteria and its difference from plant, Grx targets were retained specifically on an affinity media coupled with a mutated monocysteinic Grx and identified by mass spectra. Among 42 identified targets, 26 of them are novel ones compared with those known in higher plants. These proteins are supposed to be involved in 12 cellular processes including oxidative stress response, Calvin cycle, protein synthesis, and etc. Biochemical tests highlighted four of them which showed a Grx-dependent activation of peroxiredoxin and deactivation of catalase. Oxidized Grx2061 could keep redox equilibrium with another probable Grx and be reduced by thioredoxin reductase, indicating that Grx2061 can accept electrons from either glutathione or thioredoxin reductase. Our studies suggest Grx2061 in cyanobacteria plays an important role in redox network and its targets are as extensive as that in other organisms.


Subject(s)
Bacterial Proteins/metabolism , Oxidoreductases/metabolism , Synechocystis/enzymology , Amino Acid Substitution , Bacterial Proteins/genetics , Catalase/metabolism , Chromatography, Affinity , Genes, Bacterial , Glutaredoxins , Mutagenesis, Site-Directed , Oxidation-Reduction , Oxidative Stress , Oxidoreductases/genetics , Peroxidases/metabolism , Peroxiredoxins , Phenotype , Point Mutation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synechocystis/genetics , Synechocystis/metabolism , Thioredoxin-Disulfide Reductase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...