Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Appl Opt ; 58(10): 2567-2574, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045051

ABSTRACT

It is hard to design a traditional edge-lit light guide plate (LGP) as an ultrathin structure, because the LGP thickness will be limited by the luminescence regional width of the LED source. In this paper, a tilted light coupling structure (TLCS) for a liquid crystal display (LCD) backlight is proposed that allows an inclined layout of an edge LED array to significantly reduce the LGP thickness. The design process and optical conditions of the TLCS are first discussed, and the effect of structural parameters on the coupling efficiency is also analyzed. After that, a fundamental model and an improved model are designed: namely, the planar TLCS and the curved TLCS. Design results show that the light coupling efficiency of the proposed TLCS can reach 95%, while the LGP thickness is reduced to 7% thinner than the luminescence regional width of the LED source. The proposed TLCS will have broad applications in light guiding devices.

2.
J Colloid Interface Sci ; 544: 1-7, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30818155

ABSTRACT

Core/shell structured CdS/polydopamine/TiO2 (CdS/PDA/TiO2) ternary hybrids were fabricated by sequentially coating of PDA and TiO2 on CdS nanospheres through dopamine self-polymerization and TBOT hydrolysis and hydrothermal processes. The reaction rate constants of CdS/PDA/TiO2 ternary hybrids toward the degradation of RhB, MB and phenol were more than 3 times higher than those of CdS/TiO2 hybrids. The remarkably improved photocatalytic activity was attributed to enhanced light absorption and charge carrier separation efficiency associated with the introduction of PDA.

3.
Langmuir ; 33(33): 8192-8200, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28749692

ABSTRACT

Colloidosomes are micrometer-sized hollow particles that have shells consisting of coagulated or fused colloid particles. While many large colloidosomes with sizes well above 1.0 µm have been prepared, there are fewer examples of submicrometer colloidosomes. Here, we establish a simple emulsion templating-based method for the preparation of robust submicrometer pH-responsive microgel colloidosomes. The colloidosomes are constructed from microgel particles based on ethyl acrylate and methacrylic acid with peripheral vinyl groups. The pH-responsive microgels acted as both a Pickering emulsion stabilizer and macro-cross-linker. The emulsion formation studies showed that the minimum droplet diameter was reached when the microgel particles were partially swollen. Microgel colloidosomes were prepared by covalently interlinking the microgels adsorbed at the oil-water interface using thermal free-radical coupling. The colloidosomes were prepared using a standard high-shear mixer with two different rotor sizes that corresponded to high shear (HS) and very high shear (VHS) mixing conditions. The latter enabled the construction of submicrometer pH-responsive microgel-colloidosomes on the gram scale. The colloidosomes swelled strongly when the pH increased to above 6.0. The colloidosomes were robust and showed no evidence of colloidosome breakup at high pH. The effect of solute size on shell permeation was studied using a range of FITC-dextran polymers, and size-selective permeation occurred. The average pore size of the VHS microgel-colloidosomes was estimated to be between 6.6 and 9.0 nm at pH 6.2. The microgel-colloidosome properties suggest that they have the potential for future applications in cosmetics, photonics, and delivery.

4.
Nanoscale ; 9(28): 10126-10137, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28696442

ABSTRACT

Perovskite solar cells (PSCs) are a disruptive technology that continues to attract considerable attention due to their remarkable and sustained power conversion efficiency increase. Improving PSC stability and reducing expensive hole transport material (HTM) usage are two aspects that are gaining increased attention. In a new approach, we investigate the ability of insulating polystyrene microgel particles (MGs) to increase PSC stability and replace the majority of the HTM phase. MGs are sub-micrometre crosslinked polymer particles that swell in a good solvent. The MGs were prepared using a scalable emulsion polymerisation method. Mixed HTM/MG dispersions were subsequently spin-coated onto PSCs and formed composite HTM-MG layers. The HTMs employed were poly(triaryl amine) (PTAA), poly(3-hexylthiophene) (P3HT) and Spiro-MeOTAD (Spiro). The MGs formed mechanically robust composite HTMs with PTAA and P3HT. In contrast, Spiro-MG composites contained micro-cracks due the inability of the relatively small Spiro molecules to interdigitate. The efficiencies for the PSCs containing PTAA-MG and P3HT-MG decreased by only ∼20% compared to control PSCs despite PTAA and P3HT being the minority phases. They occupied only ∼35 vol% of the composite HTMs. An unexpected finding from the study was that the MGs dispersed well within the PTAA matrix. This morphology aided strong quenching of the CH3NH3PbI3-xClx fluorescence. In addition, the open circuit voltages for the PSCs prepared using P3HT-MG increased by ∼170 mV compared to control PSCs. To demonstrate their versatility the MGs were also used to encapsulate P3HT-based PSCs. Solar cell stability data for the latter as well as those for PSCs containing composite HTM-MG were both far superior compared to data measured for a control PSC. Since MGs can reduce conjugated polymer use and increase stability they have good potential as dual-role PSC additives.

5.
Soft Matter ; 13(11): 2228-2238, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28252143

ABSTRACT

Self-assembling poly(lauryl methacrylate)-b-poly(benzyl methacrylate) (PLMAx-PBzMAy) diblock copolymers were synthesised for the first time using solution atom transfer radical polymerisation (ATRP). The PLMA degree of polymerisation (x) was fixed at 14 and the PBzMA degree of polymerisation (y) was varied from 34 to 74. Post-polymerisation transfer of this new series of diblock copolymers from chloroform into n-dodecane (a poor solvent for PBzMA) resulted in self-assembly of polymeric nano-objects. The morphologies for the latter (spheres, worms and vesicles) were controlled by y. The observed morphologies generally agreed with those reported for related PLMAx-PBzMAy diblock copolymers (x ≥ 16) prepared by polymerisation induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) polymerisation (Fielding et al., J. Am. Chem. Soc., 2014, 136, 5790). However, a number of differences were observed such as de-gelation behaviour and the phase boundary positions compared to those expected from Fielding et al. Variable-temperature dynamic light scattering studies for the PLMA14-PBzMA34 spheres revealed that the aggregation number was unaffected by a temperature increase over the range of 20-90 °C, which differed markedly from the behaviour observed for PLMA14-PBzMA64 worms. This difference is a new observation with mechanistic importance for the worm-to-sphere breakdown mechanism. We show that concentrated PLMA14-PBzMAy dispersions (20% w/w) in n-dodecane can be prepared using post-polymerisation transfer. The dispersion with a mixed spherical and worm-like copolymer phase exhibited reversible de-gelation when heated. Surprisingly, the dispersions containing only the worm phase remained as gels (which were white) at temperatures up to 90 °C. Our new ATRP approach for preparing temperature-responsive non-aqueous nano-object dispersions presented here decoupled chain growth and self-assembly and will apply to other copolymer dispersions.

6.
Phys Chem Chem Phys ; 19(7): 5102-5112, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28138660

ABSTRACT

Gold nanoparticles (GNPs) have UV-visible absorption spectra that are highly sensitive to their local environment due to their surface plasmon resonance (SPR). Furthermore, GNPs are able to quench the fluorescence of suitable dyes depending on the GNP-dye separation. Both of these features have led to the use of GNPs as spectroscopic rulers. In this study we sought to use GNPs as spectroscopic probes to investigate the local structural changes associated with the macroscopic pH-triggered swelling/de-swelling transitions of a pH-responsive hydrogel. The hydrogel used in this study comprised covalently inter-linked pH-responsive poly(ethylacrylate-co-methacrylic acid-co-divinyl benzene) microgel particles (MGs). MGs are crosslinked polymer colloids that swell when the pH approaches the pKa of the constituent polymer. The interlinked MG hydrogels are termed doubly crosslinked microgels (DX MGs) and are a new family of hydrogels. They had polymer volume fractions (ϕp) that strongly decreased as the pH increased. UV-visible spectra showed that the wavelength of the SPR absorption (λmax) for the DX MG/GNP gels was pH-responsive. A linear relationship was found between λmax and ϕp for ϕp values up to ∼0.80. The inclusion of Rhodamine 6G within the DX MG/GNP hydrogels resulted in metal-induced fluorescence quenching which was studied using photoluminescence (PL) spectroscopy. The extent of quenching was pH-dependent and was also proportional to ϕp. The results of the study showed that the pH-triggered changes of the nanoscale and macroscopic swelling for the DX MGs were similar and imply that affine swelling occurred, which is a new observation. The data suggest that UV-visible or PL spectroscopy could be used to study the swelling of pH-responsive hydrogels containing GNPs remotely.

7.
ACS Macro Lett ; 6(11): 1245-1250, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-35650778

ABSTRACT

In this study a new pH-responsive nanogel probe containing a complementary nonradiative resonance energy transfer (NRET) fluorophore pair is investigated and its ability to act as a versatile probe of network-related changes in three hydrogels demonstrated. Fluorescent sensing using NRET is a powerful method for studying relationships between Angstrom length-scale structure and macroscopic properties of soft matter. Unfortunately, inclusion of NRET fluorophores into such materials requires material-specific chemistry. Here, low concentrations of preformed nanogel probes were included into hydrogel hosts. Ratiometric photoluminescence (PL) data for the gels labeled with the nanogel probes enabled pH-triggered swelling and deswelling to be studied as well as Ca2+-triggered collapse and solute release. PL measurements during compression of a nanogel probe-labeled nanocomposite gel demonstrated mechanochromic behavior and strain sensing. The new nanogel probes have excellent potential for investigating the internal structures of gels and provide a versatile ratiometric fluorescent platform for studying pH and strain.

8.
Soft Matter ; 12(33): 6985-94, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27476758

ABSTRACT

Microgels (MGs) are crosslinked polymer particles that swell when the pH approaches the pKa of the constituent polymer. Our earlier work showed that concentrated MG dispersions can be covalently interlinked to form macroscopic hydrogels, which are termed doubly crosslinked microgels (DX MGs). Here, we study for the first time the effects of intra-MG crosslinking on the swelling of the MGs and the mechanical properties of the DX MGs. The MGs were synthesised by emulsion copolymerisation of ethyl acrylate (EA) or methacrylic acid (MAA) and divinylbenzene (DVB). The latter was a crosslinking monomer. For comparison, MGs were prepared where DVB was replaced by either 1,4-butanediol diacrylate (BDDA) or a 1 : 1 mixture of both DVB and BDDA. The MG swelling behaviours were studied by dynamic light scattering; whereas, the DX MG mechanical properties were studied by dynamic rheology and uniaxial compression measurements. Inclusion of DVB within the MGs resulted in both highly swelling MGs and highly ductile DX MGs. The average strain-at-break value for the DVB-containing DX MGs was 76% which represents the highest value yet reported for a DX MG prepared using commercially available monomers. It was also shown that good tuneability of the DX MG properties could be obtained simply by controlling the DVB and BDDA contents within the MG particles. Analysis of the swelling and compression data enabled relationships between the volume-swelling ratio of the MGs and either the modulus or strain-at-break values for the DX MGs. These relationships also applied to a DVB-free system prepared with a low BDDA content. An interesting conclusion from this study is that the DX MGs can be thought of mechanically as macroscopic MG particles. The results of this study provide design tools for improving DX MG ductility and hence increasing the range of potential applications for this new class of hydrogel.

9.
Biomacromolecules ; 17(7): 2448-58, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27267971

ABSTRACT

In this study hydrogel composites are investigated that contain sacrificial pH-responsive collapsed hollow particles (CHPs) entrapped within a poly(acrylamide) (PAAm) network. The CHPs were prepared using a scalable (mainly) water-based method and had a bowl-like morphology that was comparable to that of red blood cells. The CHPs were constructed from poly(methyl methacrylate-co-methacrylic acid), which is a pH-responsive copolymer. The PAAm/CHP composite morphology was probed with optical microscopy, CLSM and SEM. These data showed the CHPs were dispersed throughout the PAAm network. Inclusion of the CHPs within the gel composites increased the modulus in a tunable manner. The CHPs fragmented at pH values greater than the pKa of the particles, and this process decreased the gel modulus to values similar to that of the parent PAAm hydrogel. CHPs containing a model drug were used to demonstrate pH-triggered release from PAAm/CHP and the release kinetics obeyed Fickian diffusion. The composite gels had low cytotoxicity as evidenced by Live/Dead and MTT assays. The hydrogel composites showed dual action pH-triggered softening with simultaneous drug release which occurred without a volume increase. The hydrogel composites may have potential application as enteric gels or for intra-articular drug delivery.


Subject(s)
Biocompatible Materials/chemistry , Chondrocytes/drug effects , Drug Delivery Systems , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Polymers/administration & dosage , Polymers/chemistry , Cell Survival/drug effects , Cells, Cultured , Chondrocytes/cytology , Humans , Hydrogen-Ion Concentration
10.
Soft Matter ; 12(18): 4142-53, 2016 05 14.
Article in English | MEDLINE | ID: mdl-27067636

ABSTRACT

Conductive gel composites are attracting considerable attention because of their interesting electrical and mechanical properties. Here, we report conductive gel composites constructed using only colloidal particles as building blocks. The composites were prepared from mixed dispersions of vinyl-functionalised pH-responsive microgel particles (MGs) and multi-walled carbon nanotubes (CNTs). MGs are crosslinked pH-responsive polymer colloid particles that swell when the pH approaches the pKa of the particles. Two MG systems were used which contained ethyl acrylate (EA) or methyl acrylate (MA) and around 30 mol% of methacrylic acid (MAA). The MA-based MG is a new pH-responsive system. The mixed MG/CNT dispersions formed thixotropic physical gels. Those gels were transformed into covalent interlinked electrically conducting doubly crosslinked microgel/CNT composites (DX MG/CNT) by free-radical reaction. The MGs provided the dual roles of dispersant for the CNTs and macro-crosslinker for the composite. TEM data showed evidence for strong attraction between the MG and the CNTs which facilitated CNT dispersion. An SEM study confirmed CNT dispersion throughout the composites. The mechanical properties of the composites were studied using dynamic rheology and uniaxial compression measurements. Surprisingly, both the ductility and the modulus of the gel composites increased with increasing CNT concentration used for their preparation. Human adipose-derived mesenchymal stem cells (AD-MSCs) exposed to DX MG/CNT maintained over 99% viability with metabolic activity retained over 7 days, which indicated non-cytotoxicity. The results of this study suggest that our approach could be used to prepare other DX MG/CNT gel composites and that these materials may lead to future injectable gels for advanced soft-tissue repair.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate , Nanotubes, Carbon , Adipose Tissue , Gels , Humans , Hydrogen-Ion Concentration , Mesenchymal Stem Cells , Polymers
11.
Soft Matter ; 12(4): 1116-26, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26610808

ABSTRACT

Whilst hydrogels and hollow particles both continue to attract much attention in the literature there are few examples of hydrogel composites containing hollow particles. Here, we study composite polyacrylamide (PAAm) hydrogels containing micrometer-sized pH-responsive shell-crosslinked hollow particles (abbreviated as HPXL) based on poly(methylmethacrylate-co-methacrylic acid) functionalised with glycidyl methacrylate (GMA). The HPXL particles were prepared using our scaleable emulsion template method and inclusion of GMA was found to promote spherical hollow particle formation. The pendant vinyl groups from GMA enabled shell-crosslinked hollow particles to be prepared prior to formation of the PAAm/HPXL composite gels. The morphologies of the particles and composite gels were studied by optical microscopy, confocal laser scanning microscopy and scanning electron microscopy. Dynamic rheology measurements for the composite gels showed that the modulus variation with HPXL concentration could be described by a percolation model with a HPXL percolation threshold concentration of 4.4 wt% and a scaling exponent of 2.6. The composite gels were pH-responsive and largely maintained their mechanical properties over the pH range 4.0 to 8.0. Because the composite gels had tuneable mechanical properties (with modulus values up to 530 kPa) and were pH-responsive they are potential candidates for future wound healing or membrane applications.


Subject(s)
Acrylic Resins/chemistry , Hydrogels/chemistry , Capsules/chemistry , Cross-Linking Reagents/chemistry , Elasticity , Hydrogen-Ion Concentration , Polymethacrylic Acids/chemistry
12.
Soft Matter ; 11(42): 8322-32, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26347070

ABSTRACT

Whilst polystyrene microgels belong to the oldest family of microgel particles, their behaviours when deposited onto substrates or prepared as composites have received little attention. Because polystyrene microgels are solvent-swellable, and inherently colloidally stable, they are well suited to form composites with conjugated polymers. Here, we investigate the morphology and light absorption properties of spin coated composite films prepared from mixed dispersions of polystyrene microgels and poly(3-hexylthiophene) (P3HT) for the first time. We compare the morphologies of the composite films to spin coated microgel films. The films were studied using optical microscopy, SEM, AFM, wide-angle X-ray diffraction and UV-visible spectroscopy. The films contained flattened microgel particles with an aspect ratio of ∼10. Microgel islands containing hexagonally close packed particles were evident for both the pure microgel and microgel/P3HT composite films. The latter were electrically conducting. The composite film morphology was dependent on the microgel and P3HT concentration used for film preparation and a morphology phase diagram was constructed. The P3HT phase acted as an electrically conducting cement and increased the robustness of the films to solvent washing. The composite films were photoactive due to the P3HT component. The absorbance for the films was tuneable and increased linearly with both microgel and P3HT concentration. The results of the study should apply to other organic swellable microgel/conjugated polymer combinations and may lead to new colloidal composites for future optoelectronic applications.


Subject(s)
Absorption, Radiation , Gels/chemistry , Light , Polystyrenes , Thiophenes/chemistry , Electric Conductivity , Microscopy, Electron, Scanning , Solutions/chemistry , X-Ray Diffraction
13.
Chem Commun (Camb) ; 51(18): 3854-7, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25655036

ABSTRACT

A new family of pH-responsive microgel-colloidosomes was prepared using microgel particles as the building blocks and macro-crosslinker. Our simple and versatile method used covalent inter-linking of vinyl-functionalised microgel particles adsorbed to oil droplets to form shells of doubly crosslinked microgels (DX MGs) and was demonstrated using two different microgel types.

14.
Langmuir ; 30(44): 13384-93, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25313805

ABSTRACT

In this study we mixed low concentrations of graphene oxide (GO) with microgel (MG) particles and formed composite doubly cross-linked microgels (DX MG/GO) gels. The MG particles comprised poly(ethyl acrylate-co-methacrylic acid-co-1,4-butanediol diacrylate) with pendant glycidyl methacrylate units. The MG/GO mixed dispersions formed physical gels of singly cross-linked MGs (termed SX MG/GO), which were subsequently heated to produce DX MG/GO gels by free-radical reaction. The influence of the GO concentration on the mechanical properties of the SX MG/GO and DX MG/GO gels was investigated using dynamic rheology and static compression measurements. The SX MG/GO physical gels were injectable and moldable. The moduli for the DX MG/GO gels increased by a factor of 4-6 when only ca. 1.0 wt % of GO was included. The isostrain model was used to describe the variation of modulus with DX MG/GO composition. Inclusion of GO dramatically altered the stress dissipation and yielding mechanisms for the gels. GO acted as a high surface area, high modulus filler and played an increasing role in load distribution as the GO concentration increased. It is proposed that MG domains were dispersed within a percolated GO network. Comparison of the modulus data with those published for GO-free DX MGs showed that inclusion of GO provided an unprecedented rate of modulus increase with network volume fraction for this family of colloid gels. Furthermore, the DX MG/GO gels were biocompatible and the results imply that there may be future applications of these new systems as injectable load supporting gels for soft tissue repair.


Subject(s)
Cross-Linking Reagents/chemistry , Gels/chemistry , Graphite/chemistry , Oxides/chemistry , Chemistry, Physical , Cross-Linking Reagents/chemical synthesis , Hydrogen-Ion Concentration , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...