Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139376

ABSTRACT

Recently, the application of LiFePO4 (LFP) batteries in electric vehicles has attracted extensive attention from researchers. This work presents a composite of LFP particles trapped in reduced graphene oxide (rGO) nanosheets obtained through the high-temperature reduction strategy. The obtained LiFePO4/rGO composites indicate spherical morphology and uniform particles. As to the structure mode of the composite, LFP distributes in the interlayer structure of rGO, and the rGO evenly covers the surface of the particles. The LFP/rGO cathodes demonstrate a reversible specific capacity of 165 mA h g-1 and high coulombic efficiency at 0.2 C, excellent rate capacity (up to 10 C), outstanding long-term cycling stability (98%) after 1000 cycles at 5 C. The combined high electron conductivity of the layered rGO coating and uniform LFP particles contribute to the remarkable electrochemical performance of the LFP/rGO composite. The unique LFP/rGO cathode provides a potential application in high-power lithium-ion batteries.


Subject(s)
Electric Power Supplies , Lithium , Electric Conductivity , Electrodes , Ions
2.
Chem Commun (Camb) ; 59(96): 14293-14296, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37964766

ABSTRACT

A highly efficient and metal-free [3+2] cyclization/rearrangement reaction toward the synthesis of multisubstituted trifluoromethyloxazolines from α-hydroxyketones and trifluoromethyl N-acylhydrazones has been developed. The unprecedented rearrangement of the amide fragment under acidic conditions after cleavage of the N-N bond of acylhydrazones has opened up new avenues for the development of reactions involving trifluoromethyl N-acylhydrazones. DFT calculations show that the mechanism involves multiple proton transfer processes.

SELECTION OF CITATIONS
SEARCH DETAIL