Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Adv Sci (Weinh) ; : e2401171, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973363

ABSTRACT

Ripretinib, a broad-spectrum inhibitor of the KIT and PDGFRA receptor tyrosine kinases, is designated as a fourth-line treatment for gastrointestinal stromal tumor (GIST). It is tailored for patients resistant to imatinib, sunitinib, and regorafenib. As its increasing use, instances of resistance to ripretinib are becoming more frequent. Unfortunately, there are currently no scientifically mature treatment options available for patients resistant to ripretinib. Posttranslational modifications (PTMs) such as ubiquitination, in conjunction with its interplay with other modifications, play a collective role in regulating tumor initiation and progression. However, the specific association between ubiquitination and ripretinib resistance is not reported. Through proteome-ubiquitinome sequencing, increased levels of the USP5 protein and decreased ubiquitination in ripretinib-resistant GISTs are detected. Subsequent examination of the mass spectrometry findings validated the interaction through which TRIM21 governs USP5 expression via ubiquitination, and USP5 regulates MDH2 expression through deubiquitination, consequently fostering ripretinib resistance in GIST. Moreover, ZDHHC18 can palmitoylate MDH2, preventing its ubiquitination and further increasing its protein stability. The research underscores the correlation between posttranslational modifications, specifically ubiquitination, and drug resistance, emphasizing the potential of targeting the USP5-MDH2 axis to counteract ripretinib resistance in GIST.

2.
Article in English | MEDLINE | ID: mdl-38985460

ABSTRACT

Cilia are hair-like organelles present on cell surfaces. They often exhibit a collective wave-like motion that can enhance fluid or particle transportation function, known as metachronal motion. Inspired by nature, researchers have developed artificial cilia capable of inducing metachronal motion, especially magnetic actuation. However, current methods remain intricate, requiring either control of the magnetic or geometrical properties of individual cilia or the generation of a complex magnetic field. In this paper, we present a novel elegant method that eliminates these complexities and induces metachronal motion of arrays of identical microscopic magnetic artificial cilia by applying a simple rotating uniform magnetic field. The key idea of our method is to place arrays of cilia on surfaces with a specially designed curvature. This results in consecutive cilia experiencing different magnetic field directions at each point in time, inducing a phase lag in their motion, thereby causing collective wave-like motion. Moreover, by tuning the surface curvature profile, we can achieve diverse metachronal patterns analogous to symplectic and antiplectic metachronal motion observed in nature, and we can even devise novel combinations thereof. Furthermore, we characterize the local flow patterns generated by the motion of the cilia, revealing the formation of vortical patterns. Our novel approach simplifies the realization of miniaturized metachronal motion in microfluidic systems and opens the possibility of controlling flow pattern generation and transportation, opening avenues for applications such as lab-on-a-chip technologies, organ-on-a-chip platforms, and microscopic object propulsion.

3.
Cancer Lett ; 596: 217004, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38838765

ABSTRACT

Long non-coding RNA (lncRNA) is closely related to a variety of human cancers, which may provide huge potential biomarkers for cancer diagnosis and treatment. However, the aberrant expression of most lncRNAs in colorectal cancer (CRC) remains elusive. This study aims to explore the clinical significance and potential mechanism of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in the colorectal cancer. Here, we demonstrated that lncRNA ABHD11-AS1 is high-expressed in colorectal cancer (CRC) patients, and strongly related with poor prognosis. Functionally, ABHD11-AS1 suppresses ferroptosis and promotes proliferation and migration in CRC both in vitro and in vivo. Mechanically, lncRNA ABHD11-AS1 interacted with insulin-like growing factor 2 mRNA-binding protein 2 (IGF2BP2) to enhance FOXM1 stability, forming an ABHD11-AS1/FOXM1 positive feedback loop. E3 ligase tripartite motif containing 21 (TRIM21) promotes the degradation of IGF2BP2 via the K48-ubiquitin-lysosome pathway and ABHD11-AS1 promotes the interaction between IGF2BP2 and TRIM21 as scaffold platform. Furthermore, N6 -adenosine-methyltransferase-like 3 (METTL3) upregulated the stabilization of ABHD11-AS1 through the m6A reader IGF2BP2. Our study highlights ABHD11-AS1 as a significant regulator in CRC and it may become a potential target in future CRC treatment.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Forkhead Box Protein M1 , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , RNA-Binding Proteins , Ribonucleoproteins , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Ferroptosis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Cell Proliferation , Animals , Mice , Feedback, Physiological , Disease Progression , Cell Line, Tumor , Male , Cell Movement/genetics , Female , Mice, Nude , Prognosis , Adenosine/analogs & derivatives , Serine Proteases
4.
Heliyon ; 10(10): e31639, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831834

ABSTRACT

Stem cells have been documented as a new therapeutic method for ovarian injuries such as premature ovarian failure (POF). However, effects of exosomes (Exos) derived from human endometrial stem cells (EnSCs) on diminished ovarian failure remain to be carefully elucidated. Our study aims to investigate the mechanisms of EnSC-Exos in the recovery of the cisplatin-induced granulosa cell injury model in vitro or POF mouses model in vivo and whether the Hippo signaling pathway is involved in the regulation. In this study, we established successful construction of the cisplatin-induced granulosa cell injury model and evaluated Hippo signaling pathway activation in cisplatin-damaged granulosa cells (GCs). Furthermore, laser scanning confocal microscope and immunofluorescence demonstrated that EnSC-Exos can be transferred to cisplatin-damaged GCs to decrease apoptosis. In addition, the enhanced expression of YAP at the protein level as well as YAP/TEAD target genes, such as CTGF, ANKRD1, and the increase of YAP into the nucleus in immunofluorescence staining after the addition of EnSC-Exos to cisplatin-damaged GCs confirmed the suppression of Hippo signaling pathway. While in vivo, EnSC-Exos successfully remedied POF in a mouse model. Collectively, our findings suggest that chemotherapy-induced POF was associated with the activating of Hippo signaling pathway. Human EnSC-Exos significantly elevated the proliferation of ovarian GCs and the ovarian function by regulating Hippo signaling pathway. These findings provide new insights for further understanding of EnSC-Exos in the recovery of ovary function.

5.
Proc Natl Acad Sci U S A ; 121(20): e2312855121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713626

ABSTRACT

The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.


Subject(s)
Disease Progression , Interleukin-8 , Neutrophils , Tumor Microenvironment , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/immunology , Tumor Microenvironment/immunology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Interleukin-8/metabolism , Cell Line, Tumor , Hepatocyte Growth Factor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female , Male , Neutrophil Infiltration
6.
Mol Cell Endocrinol ; 589: 112248, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38663484

ABSTRACT

Young women undergoing anticancer treatment are at risk of premature ovarian failure (POF). Endometrial-derived stem cells (EnSCs) have demonstrated significant therapeutic potential for treating ovarian insufficiency, although the underlying mechanisms remain to be fully understood. This study aims to further investigate the therapeutic effects of EnSCs, particularly through the paracrine action of fibroblast growth factor 2 (FGF2), on POF. The findings show that exogenous FGF2 enhances the survival of ovarian granulosa cells damaged by cisplatin. FGF2 stimulates the proliferation of these damaged cells by suppressing the Hippo signaling pathway and activating YAP expression. In vivo experiments also revealed that FGF2 treatment significantly improves ovarian reserve and endocrine function in mice with POF. These results suggest that FGF2 can boost the proliferative capacity of damaged ovarian granulosa cells through the Hippo-YAP signaling pathway, providing a theoretical foundation for using EnSCs and FGF2 in clinical treatments for POF.


Subject(s)
Cell Proliferation , Fibroblast Growth Factor 2 , Granulosa Cells , Hippo Signaling Pathway , Primary Ovarian Insufficiency , Signal Transduction , YAP-Signaling Proteins , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/pathology , Female , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Granulosa Cells/pathology , Animals , Cell Proliferation/drug effects , Signal Transduction/drug effects , Humans , Mice , YAP-Signaling Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cisplatin/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
7.
Appl Opt ; 63(9): 2392-2403, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38568595

ABSTRACT

It is well known that the generalized Lorenz-Mie theory (GLMT) is a rigorous analytical method for dealing with the interaction between light beams and spherical particles, which involves the description and reconstruction of the light beams with vector spherical wave functions (VSWFs). In this paper, a detailed study on the description and reconstruction of the typical structured light beams with VSWFs is reported. We first systematically derive the so-called beam shape coefficients (BSCs) of typical structured light beams, including the fundamental Gaussian beam, Hermite-Gaussian beam, Laguerre-Gaussian beam, Bessel beam, and Airy beam, with the aid of the angular spectrum decomposition method. Then based on the derived BSCs, we reconstruct these structured light beams using VSWFs and compare the results of the reconstructed beams with those of the original beams. Our results will be useful in the study of the interaction of typical structured light beams with spherical particles in the framework of GLMT.

8.
Biomimetics (Basel) ; 9(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667209

ABSTRACT

Cilia are slender, hair-like cell protrusions that are present ubiquitously in the natural world. They perform essential functions, such as generating fluid flow, propulsion, and feeding, in organisms ranging from protozoa to the human body. The coordinated beating of cilia, which results in wavelike motions known as metachrony, has fascinated researchers for decades for its role in functions such as flow generation and mucus transport. Inspired by nature, researchers have explored diverse materials for the fabrication of artificial cilia and developed several methods to mimic the metachronal motion observed in their biological counterparts. In this review, we will introduce the different types of metachronal motion generated by both biological and artificial cilia, the latter including pneumatically, photonically, electrically, and magnetically driven artificial cilia. Furthermore, we review the possible applications of metachronal motion by artificial cilia, focusing on flow generation, transport of mucus, particles, and droplets, and microrobotic locomotion. The overall aim of this review is to offer a comprehensive overview of the metachronal motions exhibited by diverse artificial cilia and the corresponding practical implementations. Additionally, we identify the potential future directions within this field. These insights present an exciting opportunity for further advancements in this domain.

9.
Reprod Biol Endocrinol ; 22(1): 41, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605340

ABSTRACT

BACKGROUND: Premature ovarian failure (POF) caused by cisplatin is a severe and intractable sequela for young women with cancer who received chemotherapy. Cisplatin causes the dysfunction of granulosa cells and mainly leads to but is not limited to its apoptosis and autophagy. Ferroptosis has been also reported to participate, while little is known about it. Our previous experiment has demonstrated that endometrial stem cells (EnSCs) can repair cisplatin-injured granulosa cells. However, it is still unclear whether EnSCs can play a repair role by acting on ferroptosis. METHODS: Western blotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were applied to detect the expression levels of ferroptosis-related genes. CCK-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to evaluate cell viability. Transmission electron microscopy (TEM) was performed to detect ferroptosis in morphology. And the extent of ferroptosis was assessed by ROS, GPx, GSSG and MDA indicators. In vivo, ovarian morphology was presented by HE staining and the protein expression in ovarian tissue was detected by immunohistochemistry. RESULTS: Our results showed that ferroptosis could occur in cisplatin-injured granulosa cells. Ferroptosis inhibitor ferrostatin-1 (Fer-1) and EnSCs partly restored cell viability and mitigated the damage of cisplatin to granulosa cells by inhibiting ferroptosis. Moreover, the repair potential of EnSCs can be markedly blocked by ML385. CONCLUSION: Our study demonstrated that cisplatin could induce ferroptosis in granulosa cells, while EnSCs could inhibit ferroptosis and thus exert repair effects on the cisplatin-induced injury model both in vivo and in vitro. Meanwhile, Nrf2 was validated to participate in this regulatory process and played an essential role.


Subject(s)
Cisplatin , Ferroptosis , NF-E2-Related Factor 2 , Female , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Granulosa Cells/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Stem Cells/metabolism
10.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 202-211, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678604

ABSTRACT

DNA replication and sister chromatid cohesion 1 (DSCC1) exerts various functions including sister chromatid cohesion. DSCC1 overexpression plays an important role in cancer development, such as in colorectal, breast, and hepatocellular cancers. The specific role of DSCC1 in tumor progression remains largely unknown, necessitating a pan-cancer investigation to understand the potential function of DSCC1 in various cancers. In this study, we obtained data on physiological conditions, transcriptional expression, survival prognosis, genomic alteration, genomic instability, enriched pathways, immune infiltration, and immunotherapy from The Cancer Genome Atlas, The Genotype-Tissue Expression, cBioPortal, and other publicly available databases to systematically characterize the oncogenic and immunological roles of DSCC1 in 33 different cancers. We found that DSCC1 expression was upregulated at both mRNA and protein levels in various cancers. Additionally, DSCC1 expression was associated with higher tumor stage and grade in specific cancers. DSCC1 was a potential pan-cancer prognostic biomarker for its close association with patient prognosis and a diagnostic biomarker for its high predictive value in distinguishing tumor tissues from normal tissues. DSCC1 was universally amplified across different cancers and tightly associated with genomic instability. Moreover, DSCC1 had a close relationship with tumor immune cell infiltration; thus, it could be used as a potential biomarker for predicting the response and survival of patients with cancer who receive immune checkpoint blockade treatment. To sum up, our study revealed that DSCC1 is a promising target for tumor therapy.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Genomic Instability , Neoplasms , Nuclear Proteins , Humans , Biomarkers, Tumor/genetics , Immunotherapy , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/diagnosis , Prognosis , Nuclear Proteins/genetics , Nuclear Proteins/immunology
11.
Front Pharmacol ; 15: 1367316, 2024.
Article in English | MEDLINE | ID: mdl-38590635

ABSTRACT

As the global cancer burden escalates, the search for alternative therapies becomes increasingly vital. Natural products, particularly plant-derived compounds, have emerged as promising alternatives to conventional cancer treatments due to their diverse bioactivities and favorable biosafety profiles. Here, we investigate Paucatalinone A, a newly discovered geranylated flavanone derived from the fruit of Paulownia Catalpifolia Gong Tong, notable for its significant anti-cancer properties. We revealed the capability of Paucatalinone A to induce apoptosis in osteosarcoma cells and deciphered its underlying mechanisms. Our findings demonstrate that Paucatalinone A substantially augments apoptosis, inhibits cell proliferation, and demonstrates a pronounced anti-tumor effect in a murine model of osteosarcoma. Mechanistically, Paucatalinone A disrupts calcium homeostasis and exacerbates intracellular reactive oxygen species accumulation, leading to mitochondrial impairment, cytoskeletal collapse, and caspase-dependent apoptotic cell death. This study underscores the potential of Paucatalinone A in initiating apoptosis in cancer cells and highlights the therapeutic efficacy of plant-derived agents in treating osteosarcoma, offering a viable approach for managing other intractable cancers.

12.
Front Pharmacol ; 15: 1338902, 2024.
Article in English | MEDLINE | ID: mdl-38434706

ABSTRACT

Introduction: Linezolid is an oxazolidinone antibiotic that is active against drug-resistant Gram-positive bacteria and multidrug-resistant Mycobacterium tuberculosis. Real-world studies on the safety of linezolid in large populations are lacking. This study aimed to determine the adverse events associated with linezolid in real-world settings by analyzing data from the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Methods: We retrospectively extracted reports on adverse drug events (ADEs) from the FAERS database from the first quarter of 2004 to that of 2023. By using disproportionality analysis including reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), along with the multi-item gamma Poisson shrinker (MGPS), we evaluated whether there was a significant association between linezolid and ADE. The time to onset of ADE was further analyzed in the general population and within each age, weight, reporting population, and weight subgroups. Results: A total of 11,176 reports of linezolid as the "primary suspected" drug and 263 significant adverse events of linezolid were identified, including some common adverse events such as thrombocytopenia (n = 1,139, ROR 21.98), anaemia (n = 704, ROR 7.39), and unexpected signals that were not listed on the drug label such as rhabdomyolysis (n = 90, ROR 4.33), and electrocardiogram QT prolonged (n = 73, ROR 4.07). Linezolid-induced adverse reactions involved 27 System Organ Class (SOC). Gender differences existed in ADE signals related to linezolid. The median onset time of all ADEs was 6 days, and most ADEs (n = 3,778) occurred within the first month of linezolid use but some may continue to occur even after a year of treatment (n = 46). Conclusion: This study reports the time to onset of adverse effects in detail at the levels of SOC and specific preferred term (PT). The results of our study provide valuable insights for optimizing the use of linezolid and reducing potential side effects, expected to facilitate the safe use of linezolid in clinical settings.

13.
Sci Rep ; 14(1): 3870, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38365849

ABSTRACT

Hypoxia-mediated chemoresistance plays a crucial role in the development of ovarian cancer (OC). However, the roles of hypoxia-related genes (HRGs) in chemoresistance and prognosis prediction and theirs underlying mechanisms remain to be further elucidated. We intended to identify and validate classifiers of hub HRGs for chemoresistance, diagnosis, prognosis as well as immune microenvironment of OC, and to explore the function of the most crucial HRG in the development of the malignant phenotypes. The RNA expression and clinical data of HRGs were systematically evaluated in OC training group. Univariate and multivariate Cox regression analysis were applied to construct hub HRGs classifiers for prognosis and diagnosis assessment. The relationship between classifiers and chemotherapy response and underlying pathways were detected by GSEA, CellMiner and CIBERSORT algorithm, respectively. OC cells were cultured under hypoxia or transfected with HIF-1α or HIF-2α plasmids, and the transcription levels of TGFBI were assessed by quantitative PCR. TGFBI was knocked down by siRNAs in OC cells, CCK8 and in vitro migration and invasion assays were performed to examine the changes in cell proliferation, motility and metastasis. The difference in TGFBI expression was examined between cisplatin-sensitive and -resistant cells, and the effects of TGFBI interference on cell apoptosis, DNA repair and key signaling molecules of cisplatin-resistant OC cells were explored. A total of 179 candidate HRGs were extracted and enrolled into univariate and multivariate Cox regression analysis. Six hub genes (TGFBI, CDKN1B, AKAP12, GPC1, TGM2 and ANGPTL4) were selected to create a HRGs prognosis classifier and four genes (TGFBI, AKAP12, GPC1 and TGM2) were selected to construct diagnosis classifiers. The HRGs prognosis classifier could precisely distinguish OC patients into high-risk and low-risk groups and estimate their clinical outcomes. Furthermore, the high-risk group had higher percentage of Macrophages M2 and exhibited higher expression of immunecheckpoints such as PD-L2. Additionally, the diagnosis classifiers could accurately distinguish OC from normal samples. TGFBI was further verified as a specific key target and demonstrated that its high expression was closely correlated with poor prognosis and chemoresistance of OC. Hypoxia upregulated the expression level of TGFBI. The hypoxia-induced factor HIF-2α but not HIF-1α could directly bind to the promoter region of TGFBI, and facilitate its transcription level. TGFBI was upregulated in cisplatin-sensitive and resistant ovarian cancer cells in a cisplatin time-dependent manner. TGFBI interference downregulated DNA repair-related markers (p-p95/NBS1, RAD51, p-DNA-PKcs, DNA Ligase IV and Artemis), apoptosis-related marker (BCL2) and PI3K/Akt pathway-related markers (PI3K-p110 and p-Akt) in cisplatin-resistant OC cells. In summary, the HRGs prognosis risk classifier could be served as a predictor for OC prognosis and efficacy evaluation. TGFBI, upregulated by HIF-2α as an HRG, promoted OC chemoresistance through activating PI3K/Akt pathway to reduce apoptosis and enhance DNA damage repair pathway.


Subject(s)
Apoptosis , Drug Resistance, Neoplasm , Ovarian Neoplasms , Female , Humans , Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , DNA Repair , Drug Resistance, Neoplasm/genetics , Hypoxia , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tumor Microenvironment
14.
Biomed Pharmacother ; 172: 116224, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308970

ABSTRACT

OBJECTIVE: Extracellular vesicles (EVs) have garnered considerable attention among researchers as candidates for natural drug delivery systems. This study aimed to investigate whether extracellular vesicle mediated targeting delivery of growth differentiation factor-15 (GDF15) improves myocardial repair by reprogramming macrophages post myocardial injury. METHODS: EVs were isolated from macrophages transfected with GDF15 (EXO-GDF15) and control macrophages (EXO-NC). In vitro and vivo experiments, we compared their reprogram ability of macrophages and regeneration activity. Furthermore, proteomic analysis were employed to determine the specific mechanism by which GDF15 repairs the myocardium. RESULTS: Compared with EXO-NC, EXO-GDF15 significantly regulated macrophage phenotypic shift, inhibited cardiomyocyte apoptosis, and enhanced endothelial cell angiogenesis. Moreover, EXO-GDF15 also significantly regulated macrophage heterogeneity and inflammatory cytokines, reduced fibrotic area, and enhanced cardiac function in infarcted rats. Proteomic analysis revealed a decrease in fatty acid-binding protein 4 (FABP4) protein expression following treatment with EXO-GDF15. Mechanistically, the reprogramming of macrophages by EXO-GDF15 is accomplished through the activation of Smad2/3 phosphorylation, which subsequently inhibits the production of FABP4. CONCLUSIONS: Extracellular vesicle mediated targeting delivery of growth differentiation factor-15 improves myocardial repair by reprogramming macrophages post myocardial injury via down-regulating the expression of FABP4. EXO-GDF15 may serve as a promising approach of immunotherapy.


Subject(s)
Exosomes , Extracellular Vesicles , Heart Injuries , Myocardial Infarction , Rats , Animals , Myocardial Infarction/metabolism , Proteomics , Exosomes/metabolism , Myocardium/metabolism , Extracellular Vesicles/metabolism , Macrophages/metabolism , Heart Injuries/metabolism
15.
Front Pharmacol ; 15: 1329409, 2024.
Article in English | MEDLINE | ID: mdl-38357305

ABSTRACT

Introduction: The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene fusions has facilitated the development of precision oncology. Two first-generation NTRK inhibitors (larotrectinib and entrectinib) are currently approved for the treatment of patients with solid tumors harboring NTRK gene fusions. Nevertheless, comprehensive NTRK profiling at the pan-cancer genomic level and real-world studies pertaining to the adverse events of NTRK inhibitors are lacking. Methods: We characterize the genome of NTRK at the pan-cancer level through multi-omics databases such as The Cancer Genome Atlas (TCGA). Through the FDA Adverse Event Reporting System (FAERS) database, we collect reports of entrectinib and larotrectinib-induced adverse events and perform a pharmacovigilance analysis using various disproportionality methods. Results: NTRK1/2/3 expression is lower in most tumor tissues, while they have higher methylation levels. NTRK gene expression has prognostic value in some cancer types, such as breast invasive carcinoma (BRCA). The cancer type with highest NTRK alteration frequency is skin cutaneous melanoma (SKCM) (31.98%). Thyroid carcinoma (THCA) has the largest number of NTRK fusion cases, and the most common fusion pair is ETV6-NTRK3. Adverse drug events (ADEs) obtained from the FAERS database for larotrectinib and entrectinib are 524 and 563, respectively. At the System Organ Class (SOC) level, both drugs have positive signal value for "nervous system disorder". Other positive signals for entrectinib include "cardiac disorders", "metabolism and nutrition disorders", while for larotrectinib, it is "hepatobiliary disorders". The unexpected signals are also listed in detail. ADEs of the two NTRK inhibitors mainly occur in the first month. The median onset time of ADEs for entrectinib and larotrectinib was 16 days (interquartile range [IQR] 6-86.5) and 44 days ([IQR] 7-136), respectively. Conclusion: Our analysis provides a broad molecular view of the NTRK family. The real-world adverse drug event analysis of entrectinib and larotrectinib contributes to more refined medication management.

16.
Br J Cancer ; 130(4): 526-541, 2024 03.
Article in English | MEDLINE | ID: mdl-38182686

ABSTRACT

BACKGROUND: Imatinib has become an exceptionally effective targeted drug for treating gastrointestinal stromal tumors (GISTs). Despite its efficacy, the resistance to imatinib is common in GIST patients, posing a significant challenge to the effective treatment. METHODS: The expression profiling of TRIM21, USP15, and ACSL4 in GIST patients was evaluated using Western blot and immunohistochemistry. To silence gene expression, shRNA was utilized. Biological function of TRIM21, USP15, and ACSL4 was examined through various methods, including resistance index calculation, colony formation, shRNA interference, and xenograft mouse model. The molecular mechanism of TRIM21 and USP15 in GIST was determined by conducting Western blot, co-immunoprecipitation, and quantitative real-time PCR (qPCR) analyses. RESULTS: Here we demonstrated that downregulation of ACSL4 is associated with imatinib (IM) resistance in GIST. Moreover, clinical data showed that higher levels of ACSL4 expression are positively correlated with favorable clinical outcomes. Mechanistic investigations further indicated that the reduced expression of ACSL4 in GIST is attributed to excessive protein degradation mediated by the E3 ligase TRIM21 and the deubiquitinase USP15. CONCLUSION: These findings demonstrate that the TRIM21 and USP15 control ACSL4 stability to maintain the IM sensitive/resistant status of GIST.


Subject(s)
Antineoplastic Agents , Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Humans , Animals , Mice , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Drug Resistance, Neoplasm/genetics , RNA, Small Interfering/pharmacology , Proto-Oncogene Proteins c-kit/metabolism , Cell Line, Tumor , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Ubiquitin-Specific Proteases/pharmacology
17.
J Cosmet Dermatol ; 23(2): 639-647, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37710417

ABSTRACT

BACKGROUND: Hypertrophic scar (HS) is caused by the abnormal proliferation of fibroblasts and excessive deposition of extracellular matrix (ECM). Emerging evidence demonstrates that c-Maf positive M2 macrophages were mainly located in the hypertrophic scar tissues of proliferative phase. But whether c-Maf positive M2 macrophages can promote hypertrophic scar formation through modulating hypertrophic scar fibroblasts remains elusive. AIMS: The aim of this study is to investigate the effects of c-Maf positive M2 macrophages on the biological behaviors and functions of hypertrophic scar fibroblasts and the potential mechanism. METHODS: HE and Masson trichrome staining were used to examine the histological features of human hypertrophic scar. Immunofluorescence staining was employed to label and quantify the c-Maf+ /CD68+ M2 macrophages. CCK8, wound healing, and transwell assays were utilized to test the effects of c-Maf overexpressed M2 macrophages or the cell culture supernatants on the proliferation and migration of hypertrophic scar derived fibroblasts (HFBs) and normal skin derived fibroblasts (NFBs). Western blot and qPCR were harnessed to test the expressions of COL1, COL3, and α-SMA in the co-cultivated fibroblasts and TGF-ß1 in the c-Maf overexpressed M2 macrophages. RESULTS: Increased number of c-Maf+ /CD68+ M2 macrophages were found in HS in contrast to the normal skin (NS). Elevated proliferation and migration were observed in the HFBs or NFBs co-cultured with c-Maf overexpressed macrophages or the cell culture supernatants. A higher mRNA and protein expressions of COL1, COL3, and α-SMA were recorded in the HFBs co-cultured with c-Maf overexpressed macrophages or treated with its culture supernatants. In addition, augmented mRNA and protein expressions of TGF-ß1 were also investigated in the c-Maf overexpressed macrophages. CONCLUSION: c-Maf positive macrophages promote hypertrophic scar formation through regulating HFBs proliferation, migration, and ECM deposition via the secreted TGF-ß1.


Subject(s)
Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/pathology , Extracellular Matrix/metabolism , Fibroblasts , Macrophages/metabolism , Macrophages/pathology , RNA, Messenger/metabolism , Transforming Growth Factor beta1/metabolism
18.
Front Pharmacol ; 14: 1259908, 2023.
Article in English | MEDLINE | ID: mdl-37954852

ABSTRACT

Introduction: Etoposide is a broad-spectrum antitumor drug that has been extensively studied in clinical trials. However, limited information is available regarding its real-world adverse reactions. Therefore, this study aimed to assess and evaluate etoposide-related adverse events in a real-world setting by using data mining method on the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) database. Methods: Through the analysis of 16,134,686 reports in the FAERS database, a total of 9,892 reports of etoposide-related adverse drug events (ADEs) were identified. To determine the significance of these ADEs, various disproportionality analysis algorithms were applied, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) algorithms. Results: As a result, 478 significant disproportionality preferred terms (PTs) that were identified by all four algorithms were retained. These PTs included commonly reported adverse events such as thrombocytopenia, leukopenia, anemia, stomatitis, and pneumonitis, which align with those documented in the drug's instructions and previous clinical trials. However, our analysis also uncovered unexpected and significant ADEs, including thrombotic microangiopathy, ototoxicity, second primary malignancy, nephropathy toxic, and ovarian failure. Furthermore, we examined the time-to-onset (TTO) of these ADEs using the Weibull distribution test and found that the median TTO for etoposide-associated ADEs was 10 days (interquartile range [IQR] 2-32 days). The majority of cases occurred within the first month (73.8%) after etoposide administration. Additionally, our analysis revealed specific high-risk signals for males, such as pneumonia and cardiac infarction, while females showed signals for drug resistance and ototoxicity. Discussion: These findings provide valuable insight into the occurrence of ADEs following etoposide initiation, which can potentially support clinical monitoring and risk identification efforts.

19.
J Cancer Res Clin Oncol ; 149(20): 17897-17919, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37955686

ABSTRACT

BACKGROUND: The incidence of skin cutaneous melanoma (SKCM), one of the most aggressive and lethal skin tumors, is increasing worldwide. However, for advanced SKCM, we still lack an accurate and valid way to predict its prognosis, as well as novel theories to guide the planning of treatment options for SKCM patients. Lactylation (LAC), a novel post-translational modification of histones, has been shown to promote tumor growth and inhibit the antitumor response of the tumor microenvironment (TME) in a variety of ways. We hope that this study will provide new ideas for treatment options for SKCM patients, as well as research on the molecular mechanisms of SKCM pathogenesis and development. METHODS: At the level of the RNA sequencing set (TCGA, GTEx), we used differential expression analysis, LASSO regression analysis, and multifactor Cox regression analysis to screen for prognosis-related genes and calculate the corresponding LAC scores. The content of TME cells in the tumor tissue was calculated using the CIBERSORT algorithm, and the TME score was calculated based on its results. Finally, the LAC-TME classifier was established and further analyzed based on the two scores, including the construction of a prognostic model, analysis of clinicopathological characteristics, and correlation analysis of tumor mutation burden (TMB) and immunotherapy. Based on single-cell RNA sequencing data, this study analyzed the cellular composition in SKCM tissues and explored the role of LAC scores in intercellular communication. To validate the functionality of the pivotal gene CLPB in the model, cellular experiments were ultimately executed. RESULTS: We screened a total of six prognosis-related genes (NDUFA10, NDUFA13, CLPB, RRM2B, HPDL, NARS2) and 7 TME cells with good prognosis. According to Kaplan-Meier survival analysis, we found that the LAClow/TMEhigh group had the highest overall survival (OS) and the LAChigh/TMElow group had the lowest OS (p value < 0.05). In further analysis of immune infiltration, tumor microenvironment (TME), functional enrichment, tumor mutational load and immunotherapy, we found that immunotherapy was more appropriate in the LAClow/TMEhigh group. Moreover, the cellular assays exhibited substantial reductions in proliferation, migration, and invasive potentials of melanoma cells in both A375 and A2058 cell lines upon CLPB knockdown. CONCLUSIONS: The prognostic model using the combined LAC score and TME score was able to predict the prognosis of SKCM patients more consistently, and the LAC-TME classifier was able to significantly differentiate the prognosis of SKCM patients across multiple clinicopathological features. The LAC-TME classifier has an important role in the development of immunotherapy regimens for SKCM patients.


Subject(s)
Aspartate-tRNA Ligase , Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/therapy , Prognosis , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Tumor Microenvironment/genetics , Biomarkers , Biomarkers, Tumor/genetics
20.
J Cancer Res Clin Oncol ; 149(20): 18135-18160, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38006451

ABSTRACT

BACKGROUND: G protein-coupled receptors (GPCRs) have been shown to have an important role in tumor development and metastasis, and abnormal expression of GPCRs is significantly associated with poor prognosis of tumor patients. In this study, we analyzed the GPCRs-related gene (GPRGs) and tumor microenvironment (TME) in skin cutaneous melanoma (SKCM) to construct a prognostic model to help SKCM patients obtain accurate clinical treatment strategies. METHODS: SKCM expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression analysis, LASSO algorithm, and univariate and multivariate cox regression analysis were used to screen prognosis-related genes (GPR19, GPR146, S1PR2, PTH1R, ADGRE5, CXCR3, GPR143, and OR2I1P) and multiple prognosis-good immune cells; the data set was analyzed according to above results and build up a GPR-TME classifier. The model was further subjected to immune infiltration, functional enrichment, tumor mutational load, immunotherapy prediction, and scRNA-seq data analysis. Finally, cellular experiments were conducted to validate the functionality of the key gene GPR19 in the model. RESULTS: The findings indicate that high expression of GPRGs is associated with a poor prognosis in patients with SKCM, highlighting the significant role of GPRGs and the tumor microenvironment (TME) in SKCM development. Notably, the group characterized by low GPR expression and a high TME exhibited the most favorable prognosis and immunotherapeutic efficacy. Furthermore, cellular assays demonstrated that knockdown of GPR19 significantly reduced the proliferation, migration, and invasive capabilities of melanoma cells in A375 and A2058 cell lines. CONCLUSION: This study provides novel insights for the prognosis evaluation and treatment of melanoma, along with the identification of a new biomarker, GPR19.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Prognosis , Skin Neoplasms/genetics , Tumor Microenvironment/genetics , Biomarkers , Receptors, G-Protein-Coupled/genetics , Nerve Tissue Proteins , Receptors, Neurotransmitter
SELECTION OF CITATIONS
SEARCH DETAIL
...