Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364553

ABSTRACT

Since the discovery of the quantum Hall effect in 1980, it has attracted intense interest in condensed matter physics and has led to a new type of metrological standard by utilizing the resistance quantum. Graphene, a true two-dimensional electron gas material, has demonstrated the half-integer quantum Hall effect and composite-fermion fractional quantum Hall effect due to its unique massless Dirac fermions and ultra-high carrier mobility. Here, we use a monolayer graphene encapsulated with hexagonal boron nitride and few-layer graphite to fabricate micrometer-scale graphene Hall devices. The application of a graphite gate electrode significantly screens the phonon scattering from a conventional SiO2/Si substrate, and thus enhances the carrier mobility of graphene. At a low temperature, the carrier mobility of graphene devices can reach 3 × 105 cm2/V·s, and at room temperature, the carrier mobility can still exceed 1 × 105 cm2/V·s, which is very helpful for the development of high-temperature quantum Hall effects under moderate magnetic fields. At a low temperature of 1.6 K, a series of half-integer quantum Hall plateaus are well-observed in graphene with a magnetic field of 1 T. More importantly, the ν = ±2 quantum Hall plateau clearly persists up to 150 K with only a few-tesla magnetic field. These findings show that graphite-gated high-mobility graphene devices hold great potential for high-sensitivity Hall sensors and resistance metrology standards for the new Système International d'unités.

2.
ACS Appl Mater Interfaces ; 14(17): 19869-19877, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35438495

ABSTRACT

Achieving facile control of the wavelength of light emitters is of great significance for many key applications in optoelectronics and photonics, including on-chip interconnection, super-resolution imaging, and optical communication. The Joule heating effect caused by electric current is widely applied in modulating the refractive index of silicon-based waveguides for reconfigurable nanophotonic circuits. Here, by utilizing localized Joule heating in the biased graphene device, we demonstrate electrically controlled wavelength-tunable photoluminescence (PL) from vertical van der Waals heterostructures combined by graphene and two-dimensional transition metal dichalcogenides (2D-TMDCs). By applying a moderate electric field of 6.5 kV·cm-1 to the graphene substrate, the PL wavelength of 2D-TMDCs exhibits a continuous tuning from 662 to 690 nm, corresponding to a bandgap reduction of 76 meV. The electric control is highly reversible during sweeping the bias back and forth. The temperature dependence of Raman and PL spectroscopy reveals that the current-induced local Joule heating effect plays a leading role in reducing the optical direct bandgap of TMDCs. The bias-dependent optical reflectivity and time-resolved photoluminescence measurements show a consistent reduction of the optical band gap of 2D-TMDCs and increased PL lifetimes with the electric field over the heterostructures. Moreover, we demonstrate the consistent device operation from 2D materials grown by chemical vapor deposition, showing great advantages for the scalability.

SELECTION OF CITATIONS
SEARCH DETAIL
...