Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850059

ABSTRACT

Alka(e)nes are produced by many living organisms and exhibit diverse physiological roles, reflecting a high functional versatility. Alka(e)nes serve as waterproof wax in plants, communicating pheromones for insects, and microbial signaling molecules in some bacteria. Although alka(e)nes have been found in cyanobacteria and algal chloroplasts, their importance for photosynthetic membranes has remained elusive. In this study, we investigated the consequences of the absence of alka(e)nes on membrane lipid composition and photosynthesis using the cyanobacterium Synechocystis PCC6803 as a model organism. By following the dynamics of membrane lipids and the photosynthetic performance in strains defected and altered in alka(e)ne biosynthesis, we show that drastic changes in the glycerolipid contents occur in the absence of alka(e)nes, including a decrease in the membrane carotenoid content, a decrease in some digalactosyldiacylglycerol (DGDG) species and a parallel increase in monogalactosyldiacylglycerol (MGDG) species. These changes are associated with a higher susceptibility of photosynthesis and growth to high light in alka(e)ne-deficient strains. All these phenotypes are reversed by expressing an algal photoenzyme producing alka(e)nes from fatty acids. Therefore, alkenes, despite their low abundance, are an essential component of the lipid composition of membranes. The profound remodeling of lipid composition that results from their absence suggests that they play an important role in one or more membrane properties in cyanobacteria. Moreover, the lipid compensatory mechanism observed is not sufficient to restore normal functioning of the photosynthetic membranes, particularly under high light intensity. We conclude that alka(e)nes play a crucial role in maintaining lipid homeostasis of thylakoid membranes, thereby contributing to the proper functioning of photosynthesis, particularly under elevated light intensities.

2.
Nature ; 605(7909): 366-371, 2022 05.
Article in English | MEDLINE | ID: mdl-35477755

ABSTRACT

Global photosynthesis consumes ten times more CO2 than net anthropogenic emissions, and microalgae account for nearly half of this consumption1. The high efficiency of algal photosynthesis relies on a mechanism concentrating CO2 (CCM) at the catalytic site of the carboxylating enzyme RuBisCO, which enhances CO2 fixation2. Although many cellular components involved in the transport and sequestration of inorganic carbon have been identified3,4, how microalgae supply energy to concentrate CO2 against a thermodynamic gradient remains unknown4-6. Here we show that in the green alga Chlamydomonas reinhardtii, the combined action of cyclic electron flow and O2 photoreduction-which depend on PGRL1 and flavodiiron proteins, respectively-generate a low luminal pH that is essential for CCM function. We suggest that luminal protons are used downstream of thylakoid bestrophin-like transporters, probably for the conversion of bicarbonate to CO2. We further establish that an electron flow from chloroplast to mitochondria contributes to energizing non-thylakoid inorganic carbon transporters, probably by supplying ATP. We propose an integrated view of the network supplying energy to the CCM, and describe how algal cells distribute energy from photosynthesis to power different CCM processes. These results suggest a route for the transfer of a functional algal CCM to plants to improve crop productivity.


Subject(s)
Carbon Dioxide , Chlamydomonas reinhardtii , Photosynthesis , Carbon/metabolism , Carbon Dioxide/metabolism , Chlamydomonas reinhardtii/metabolism , Chloroplasts/metabolism
3.
Int J Mol Sci ; 22(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34638618

ABSTRACT

Wildlife is chronically exposed to various sources of ionizing radiations, both environmental or anthropic, due to nuclear energy use, which can induce several defects in organisms. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help in predicting the effects at larger scales (i.e., population). In this study, we used a life stage dependent approach in order to better understand the molecular determinants of reproduction decrease in the roundworm C. elegans. Worms were chronically exposed to 50 mGy·h-1 external gamma ionizing radiations throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). Then, in addition to reproduction parameters, we performed a wide analysis of lipids (different class and fatty acid via FAMES), which are both important signaling molecules for reproduction and molecular targets of oxidative stress. Our results showed that reproductive defects are life stage dependent, that lipids are differently misregulated according to the considered exposure (e.g., upon embryogenesis and full development) and do not fully explain radiation induced reproductive defects. Finally, our results enable us to propose a conceptual model of lipid signaling after radiation stress in which both the soma and the germline participate.


Subject(s)
Caenorhabditis elegans/radiation effects , Lipid Metabolism/radiation effects , Reproduction/radiation effects , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/physiology , Fatty Acids/metabolism , Female , Gamma Rays/adverse effects , Male , Models, Biological , Oxidative Stress/radiation effects , Radiation Tolerance , Reproduction/physiology
4.
Plant Cell Environ ; 44(9): 2987-3001, 2021 09.
Article in English | MEDLINE | ID: mdl-33931891

ABSTRACT

Microalgae represent a potential solution to reduce CO2 emission exploiting their photosynthetic activity. Here, the physiologic and metabolic responses at the base of CO2 assimilation were investigated in conditions of high or low CO2 availability in two of the most promising algae species for industrial cultivation, Chlorella sorokiniana and Chlorella vulgaris. In both species, high CO2 availability increased biomass accumulation with specific increase of triacylglycerols in C. vulgaris and polar lipids and proteins in C. sorokiniana. Moreover, high CO2 availability caused only in C. vulgaris a reduced NAD(P)H/NADP+ ratio and reduced mitochondrial respiration, suggesting a CO2 dependent increase of reducing power consumption in the chloroplast, which in turn influences the redox state of the mitochondria. Several rearrangements of the photosynthetic machinery were observed in both species, differing from those described for the model organism Chlamydomonas reinhardtii, where adaptation to carbon availability is mainly controlled by the translational repressor NAB1. NAB1 homologous protein could be identified only in C. vulgaris but lacked the regulation mechanisms previously described in C. reinhardtii. Acclimation strategies to cope with a fluctuating inorganic carbon supply are thus diverse among green microalgae, and these results suggest new biotechnological strategies to boost CO2 fixation.


Subject(s)
Carbon Dioxide/metabolism , Chlorella/metabolism , Lipid Metabolism , Photosynthesis , Cell Respiration , Chlamydomonas reinhardtii/metabolism , Chlorella/physiology , Chlorella vulgaris , Chloroplasts/metabolism , Mitochondria/metabolism , Oxidation-Reduction
5.
Plant Physiol ; 186(3): 1455-1472, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33856460

ABSTRACT

Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.


Subject(s)
Carboxy-Lyases/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Fatty Acids/metabolism , Microalgae/metabolism , Photochemical Processes , Thylakoids/metabolism , Fatty Acids/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Light , Microalgae/genetics , Mutation , Thylakoids/genetics
6.
Plant J ; 100(6): 1289-1305, 2019 12.
Article in English | MEDLINE | ID: mdl-31437318

ABSTRACT

Chlorella vulgaris is a fast-growing fresh-water microalga cultivated on the industrial scale for applications ranging from food to biofuel production. To advance our understanding of its biology and to establish genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated DNA molecules. This hybrid approach allowed us to assemble the nuclear genome in 14 pseudo-molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data obtained at two different irradiances of growth (high light, HL versus low light, LL) enabled us to identify 10 724 nuclear genes, coding for 11 082 transcripts. Moreover, 121 and 48 genes, respectively, were found in the chloroplast and mitochondrial genome. Functional annotation and expression analysis of nuclear, chloroplast and mitochondrial genome sequences revealed particular features of Chlorella vulgaris. Evidence of horizontal gene transfers from chloroplast to mitochondrial genome was observed. Furthermore, comparative transcriptomic analyses of LL versus HL provided insights into the molecular basis for metabolic rearrangement under HL versus LL conditions leading to enhanced de novo fatty acid biosynthesis and triacylglycerol accumulation. The occurrence of a cytosolic fatty acid biosynthetic pathway could be predicted and its upregulation upon HL exposure was observed, consistent with the increased lipid amount under HL conditions. These data provide a rich genetic resource for future genome editing studies, and potential targets for biotechnological manipulation of Chlorella vulgaris or other microalgae species to improve biomass and lipid productivity.


Subject(s)
Acclimatization/genetics , Acclimatization/radiation effects , Chlorella vulgaris/genetics , Chlorella vulgaris/metabolism , Chlorella vulgaris/radiation effects , Light , Molecular Sequence Annotation , Base Sequence , Biofuels , Biomass , Biosynthetic Pathways/genetics , Biosynthetic Pathways/physiology , Biosynthetic Pathways/radiation effects , Biotechnology , Chlorella vulgaris/growth & development , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Fatty Acids/biosynthesis , Gene Expression Regulation, Plant/radiation effects , Gene Ontology , Gene Transfer, Horizontal , Genome, Mitochondrial , Genome, Plant , Lipids/biosynthesis , Meiosis , Phylogeny , Transcriptome , Triglycerides/biosynthesis
7.
Sci Rep ; 9(1): 1990, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30760823

ABSTRACT

Chlamydomonas reinhardtii represents an ideal model microbial system to decipher starch metabolism. In this green algae, in cells growing in photosynthetic conditions, starch mainly accumulates as a sheath surrounding the pyrenoid while in cells subjected to a nutrient starvation, numerous starch granules are filling up the plastid stroma. The mechanisms underlying and regulating this switch from photosynthetic to storage starch metabolisms are not known. In this work, we have isolated a Chlamydomonas mutant strain containing a deletion in chromosome 2 which displays abnormal starch granule distribution. Under nitrogen starvation, this strain contains an additional starch granules population. These granules are twice as big as the wild-type granules and display characteristics of photosynthetic starch. Genetic and functional complementation analyses allowed us to identify the gene responsible for this original phenotype which was called BSG1 for "Bimodal Starch Granule". Possible roles of BSG1 in starch metabolism modifications during the transition from photosynthetic to starved growth conditions are discussed.


Subject(s)
Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Cytoplasmic Granules/genetics , Starch/metabolism , Chromosome Deletion , Cytoplasmic Granules/chemistry , Photosynthesis/physiology , Starvation/pathology
8.
Plant Physiol ; 179(4): 1502-1514, 2019 04.
Article in English | MEDLINE | ID: mdl-30728273

ABSTRACT

Nitrogen (N) starvation-induced triacylglycerol (TAG) synthesis, and its complex relationship with starch metabolism in algal cells, has been intensively studied; however, few studies have examined the interaction between amino acid metabolism and TAG biosynthesis. Here, via a forward genetic screen for TAG homeostasis, we isolated a Chlamydomonas (Chlamydomonas reinhardtii) mutant (bkdE1α) that is deficient in the E1α subunit of the branched-chain ketoacid dehydrogenase (BCKDH) complex. Metabolomics analysis revealed a defect in the catabolism of branched-chain amino acids in bkdE1α Furthermore, this mutant accumulated 30% less TAG than the parental strain during N starvation and was compromised in TAG remobilization upon N resupply. Intriguingly, the rate of mitochondrial respiration was 20% to 35% lower in bkdE1α compared with the parental strains. Three additional knockout mutants of the other components of the BCKDH complex exhibited phenotypes similar to that of bkdE1α Transcriptional responses of BCKDH to different N status were consistent with its role in TAG homeostasis. Collectively, these results indicate that branched-chain amino acid catabolism contributes to TAG metabolism by providing carbon precursors and ATP, thus highlighting the complex interplay between distinct subcellular metabolisms for oil storage in green microalgae.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/physiology , Algal Proteins/physiology , Chlamydomonas reinhardtii/metabolism , Triglycerides/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Algal Proteins/genetics , Chlamydomonas reinhardtii/genetics , Chromosome Mapping , Gene Knockout Techniques , Homeostasis , Metabolomics , Mitochondria/metabolism , Nitrogen/metabolism , Sequence Analysis, RNA
9.
Plant Physiol ; 177(4): 1639-1649, 2018 08.
Article in English | MEDLINE | ID: mdl-29976836

ABSTRACT

Some microalgae, such as Chlamydomonas reinhardtii, harbor a highly flexible photosynthetic apparatus capable of using different electron acceptors, including carbon dioxide (CO2), protons, or oxygen (O2), allowing survival in diverse habitats. During anaerobic induction of photosynthesis, molecular O2 is produced at photosystem II, while at the photosystem I acceptor side, the reduction of protons into hydrogen (H2) by the plastidial [FeFe]-hydrogenases primes CO2 fixation. Although the interaction between H2 production and CO2 fixation has been studied extensively, their interplay with O2 produced by photosynthesis has not been considered. By simultaneously measuring gas exchange and chlorophyll fluorescence, we identified an O2 photoreduction mechanism that functions during anaerobic dark-to-light transitions and demonstrate that flavodiiron proteins (Flvs) are the major players involved in light-dependent O2 uptake. We further show that Flv-mediated O2 uptake is critical for the rapid induction of CO2 fixation but is not involved in the creation of the micro-oxic niches proposed previously to protect the [FeFe]-hydrogenase from O2 By studying a mutant lacking both hydrogenases (HYDA1 and HYDA2) and both Flvs (FLVA and FLVB), we show that the induction of photosynthesis is strongly delayed in the absence of both sets of proteins. Based on these data, we propose that Flvs are involved in an important intracellular O2 recycling process, which acts as a relay between H2 production and CO2 fixation.


Subject(s)
Carbon Dioxide/metabolism , Chlamydomonas reinhardtii/physiology , Hydrogen/metabolism , Oxygen/metabolism , Plant Proteins/metabolism , Anaerobiosis , Chlorophyll/metabolism , Flavoproteins/genetics , Flavoproteins/metabolism , Fluorescence , Hydrogenase/metabolism , Mutation , Photochemical Processes , Photosynthesis/physiology
10.
Science ; 357(6354): 903-907, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28860382

ABSTRACT

Although many organisms capture or respond to sunlight, few enzymes are known to be driven by light. Among these are DNA photolyases and the photosynthetic reaction centers. Here, we show that the microalga Chlorella variabilis NC64A harbors a photoenzyme that acts in lipid metabolism. This enzyme belongs to an algae-specific clade of the glucose-methanol-choline oxidoreductase family and catalyzes the decarboxylation of free fatty acids to n-alkanes or -alkenes in response to blue light. Crystal structure of the protein reveals a fatty acid-binding site in a hydrophobic tunnel leading to the light-capturing flavin adenine dinucleotide (FAD) cofactor. The decarboxylation is initiated through electron abstraction from the fatty acid by the photoexcited FAD with a quantum yield >80%. This photoenzyme, which we name fatty acid photodecarboxylase, may be useful in light-driven, bio-based production of hydrocarbons.


Subject(s)
Alkanes/metabolism , Alkenes/metabolism , Biocatalysis , Carboxy-Lyases/metabolism , Chlorella/enzymology , Fatty Acids/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Carboxy-Lyases/chemistry , Carboxy-Lyases/classification , Carboxy-Lyases/radiation effects , Flavin-Adenine Dinucleotide/metabolism , Light , Lipid Metabolism , Oxidoreductases/chemistry , Oxidoreductases/classification , Oxidoreductases/radiation effects , Photochemical Processes , Phylogeny , Plant Proteins/chemistry , Plant Proteins/classification , Plant Proteins/radiation effects
12.
Plant Physiol ; 171(4): 2406-17, 2016 08.
Article in English | MEDLINE | ID: mdl-27297678

ABSTRACT

Enriching algal biomass in energy density is an important goal in algal biotechnology. Nitrogen (N) starvation is considered the most potent trigger of oil accumulation in microalgae and has been thoroughly investigated. However, N starvation causes the slow down and eventually the arrest of biomass growth. In this study, we show that exposing a Chlamydomonas reinhardtii culture to saturating light (SL) under a nonlimiting CO2 concentration in turbidostatic photobioreactors induces a sustained accumulation of lipid droplets (LDs) without compromising growth, which results in much higher oil productivity than N starvation. We also show that the polar membrane lipid fraction of SL-induced LDs is rich in plastidial lipids (approximately 70%), in contrast to N starvation-induced LDs, which contain approximately 60% lipids of endoplasmic reticulum origin. Proteomic analysis of LDs isolated from SL-exposed cells identified more than 200 proteins, including known proteins of lipid metabolism, as well as 74 proteins uniquely present in SL-induced LDs. LDs induced by SL and N depletion thus differ in protein and lipid contents. Taken together, lipidomic and proteomic data thus show that a large part of the sustained oil accumulation occurring under SL is likely due to the formation of plastidial LDs. We discuss our data in relation to the different metabolic routes used by microalgae to accumulate oil reserves depending on cultivation conditions. Finally, we propose a model in which oil accumulation is governed by an imbalance between photosynthesis and growth, which can be achieved by impairing growth or by boosting photosynthetic carbon fixation, with the latter resulting in higher oil productivity.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Proteomics , Biomass , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/radiation effects , Light , Lipid Droplets/radiation effects , Microalgae , Nitrogen/metabolism , Photosynthesis
13.
Plant Physiol ; 171(4): 2393-405, 2016 08.
Article in English | MEDLINE | ID: mdl-27288359

ABSTRACT

Microalgae are considered a promising platform for the production of lipid-based biofuels. While oil accumulation pathways are intensively researched, the possible existence of a microalgal pathways converting fatty acids into alka(e)nes has received little attention. Here, we provide evidence that such a pathway occurs in several microalgal species from the green and the red lineages. In Chlamydomonas reinhardtii (Chlorophyceae), a C17 alkene, n-heptadecene, was detected in the cell pellet and the headspace of liquid cultures. The Chlamydomonas alkene was identified as 7-heptadecene, an isomer likely formed by decarboxylation of cis-vaccenic acid. Accordingly, incubation of intact Chlamydomonas cells with per-deuterated D31-16:0 (palmitic) acid yielded D31-18:0 (stearic) acid, D29-18:1 (oleic and cis-vaccenic) acids, and D29-heptadecene. These findings showed that loss of the carboxyl group of a C18 monounsaturated fatty acid lead to heptadecene formation. Amount of 7-heptadecene varied with growth phase and temperature and was strictly dependent on light but was not affected by an inhibitor of photosystem II. Cell fractionation showed that approximately 80% of the alkene is localized in the chloroplast. Heptadecane, pentadecane, as well as 7- and 8-heptadecene were detected in Chlorella variabilis NC64A (Trebouxiophyceae) and several Nannochloropsis species (Eustigmatophyceae). In contrast, Ostreococcus tauri (Mamiellophyceae) and the diatom Phaeodactylum tricornutum produced C21 hexaene, without detectable C15-C19 hydrocarbons. Interestingly, no homologs of known hydrocarbon biosynthesis genes were found in the Nannochloropsis, Chlorella, or Chlamydomonas genomes. This work thus demonstrates that microalgae have the ability to convert C16 and C18 fatty acids into alka(e)nes by a new, light-dependent pathway.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Chlorella/metabolism , Diatoms/metabolism , Fatty Acids/metabolism , Hydrocarbons/metabolism , Alkanes/chemistry , Alkanes/metabolism , Alkenes/chemistry , Alkenes/metabolism , Biofuels , Biomass , Biosynthetic Pathways , Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/radiation effects , Chloroplasts/metabolism , Fatty Acids/chemistry , Hydrocarbons/chemistry , Light , Microalgae , Oleic Acids/chemistry , Oleic Acids/metabolism , Stearic Acids/chemistry , Stearic Acids/metabolism
14.
Sci Rep ; 6: 25209, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27141848

ABSTRACT

Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth.


Subject(s)
Carbon/metabolism , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/metabolism , Metabolic Networks and Pathways/genetics , Quantitative Trait Loci , Chlamydomonas reinhardtii/radiation effects , Light , Mutation , Oils/metabolism , Sequence Analysis, DNA , Starch/metabolism
15.
Biotechnol Biofuels ; 9: 55, 2016.
Article in English | MEDLINE | ID: mdl-26958078

ABSTRACT

BACKGROUND: Because of their high biomass productivity and their ability to accumulate high levels of energy-rich reserve compounds such as oils or starch, microalgae represent a promising feedstock for the production of biofuel. Accumulation of reserve compounds takes place when microalgae face adverse situations such as nutrient shortage, conditions which also provoke a stop in cell division, and down-regulation of photosynthesis. Despite growing interest in microalgal biofuels, little is known about molecular mechanisms controlling carbon reserve formation. In order to discover new regulatory mechanisms, and identify genes of interest to boost the potential of microalgae for biofuel production, we developed a forward genetic approach in the model microalga Chlamydomonas reinhardtii. RESULTS: By screening an insertional mutant library on the ability of mutants to accumulate and re-mobilize reserve compounds, we isolated a Chlamydomonas mutant (starch degradation 1, std1) deficient for a dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK). The std1 mutant accumulates higher levels of starch and oil than wild-type and maintains a higher photosynthetic activity under nitrogen starvation. Phylogenetic analysis revealed that this kinase (named DYRKP) belongs to a plant-specific subgroup of the evolutionarily conserved DYRK kinase family. Furthermore, hyper-accumulation of storage compounds occurs in std1 mostly under low light in photoautotrophic condition, suggesting that the kinase normally acts under conditions of low energy status to limit reserve accumulation. CONCLUSIONS: The DYRKP kinase is proposed to act as a negative regulator of the sink capacity of photosynthetic cells that integrates nutrient and energy signals. Inactivation of the kinase strongly boosts accumulation of reserve compounds under photoautotrophic nitrogen deprivation and allows maintaining high photosynthetic activity. The DYRKP kinase therefore represents an attractive target for improving the energy density of microalgae or crop plants.

16.
Plant Cell ; 26(7): 3036-50, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24989042

ABSTRACT

During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)-mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Oxygen/metabolism , Photosynthesis , Adenosine Triphosphate/metabolism , Carbon Dioxide/metabolism , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/radiation effects , Chloroplasts/metabolism , Electron Transport , Electrons , Gene Knockout Techniques , Light , Mitochondria/metabolism , Mutation , NADP/metabolism , Oxidation-Reduction , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Protons
17.
Biotechnol Biofuels ; 6(1): 178, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24295516

ABSTRACT

BACKGROUND: Oils produced by microalgae are precursors to biodiesel. To achieve a profitable production of biodiesel from microalgae, identification of factors governing oil synthesis and turnover is desirable. The green microalga Chlamydomonas reinhardtii is amenable to genetic analyses and has recently emerged as a model to study oil metabolism. However, a detailed method to isolate various types of oil mutants that is adapted to Chlamydomonas has not been reported. RESULTS: We describe here a forward genetic approach to isolate mutants altered in oil synthesis and turnover from C. reinhardtii. It consists of a three-step screening procedure: a primary screen by flow cytometry of Nile red stained transformants grown in 96-deep-well plates under three sequential conditions (presence of nitrogen, then absence of nitrogen, followed by oil remobilization); a confirmation step using Nile red stained biological triplicates; and a validation step consisting of the quantification by thin layer chromatography of oil content of selected strains. Thirty-one mutants were isolated by screening 1,800 transformants generated by random insertional mutagenesis (1.7%). Five showed increased oil accumulation under the nitrogen-replete condition and 13 had altered oil content under nitrogen-depletion. All mutants were affected in oil remobilization. CONCLUSION: This study demonstrates that various types of oil mutants can be isolated in Chlamydomonas based on the method set-up here, including mutants accumulating oil under optimal biomass growth. The strategy conceived and the protocol set-up should be applicable to other microalgal species such as Nannochloropsis and Chlorella, thus serving as a useful tool in Chlamydomonas oil research and algal biotechnology.

18.
Plant Physiol ; 163(2): 914-28, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23958863

ABSTRACT

The ω-3 polyunsaturated fatty acids account for more than 50% of total fatty acids in the green microalga Chlamydomonas reinhardtii, where they are present in both plastidic and extraplastidic membranes. In an effort to elucidate the lipid desaturation pathways in this model alga, a mutant with more than 65% reduction in total ω-3 fatty acids was isolated by screening an insertional mutant library using gas chromatography-based analysis of total fatty acids of cell pellets. Molecular genetics analyses revealed the insertion of a TOC1 transposon 113 bp upstream of the ATG start codon of a putative ω-3 desaturase (CrFAD7; locus Cre01.g038600). Nuclear genetic complementation of crfad7 using genomic DNA containing CrFAD7 restored the wild-type fatty acid profile. Under standard growth conditions, the mutant is indistinguishable from the wild type except for the fatty acid difference, but when exposed to short-term heat stress, its photosynthesis activity is more thermotolerant than the wild type. A comparative lipidomic analysis of the crfad7 mutant and the wild type revealed reductions in all ω-3 fatty acid-containing plastidic and extraplastidic glycerolipid molecular species. CrFAD7 was localized to the plastid by immunofluorescence in situ hybridization. Transformation of the crfad7 plastidial genome with a codon-optimized CrFAD7 restored the ω-3 fatty acid content of both plastidic and extraplastidic lipids. These results show that CrFAD7 is the only ω-3 fatty acid desaturase expressed in C. reinhardtii, and we discuss possible mechanisms of how a plastid-located desaturase may impact the ω-3 fatty acid content of extraplastidic lipids.


Subject(s)
Chlamydomonas reinhardtii/enzymology , Chloroplasts/enzymology , Fatty Acid Desaturases/metabolism , Membrane Lipids/metabolism , Microalgae/enzymology , Adaptation, Physiological/genetics , Adaptation, Physiological/radiation effects , Amino Acid Sequence , Cell Nucleus/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/radiation effects , Chloroplasts/genetics , Chloroplasts/radiation effects , DNA Transposable Elements/genetics , DNA, Plant/genetics , Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/genetics , Fatty Acids, Omega-3/biosynthesis , Fluorescent Antibody Technique , Genetic Complementation Test , Genetic Loci/genetics , In Situ Hybridization , Light , Microalgae/genetics , Microalgae/radiation effects , Models, Biological , Molecular Sequence Data , Mutagenesis, Insertional/genetics , Mutation/genetics , Promoter Regions, Genetic/genetics , Sequence Homology, Nucleic Acid , Subcellular Fractions/enzymology , Temperature , Transcription, Genetic/radiation effects , Transformation, Genetic
19.
Chemosphere ; 88(8): 918-24, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22560974

ABSTRACT

Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins known to provide protection against toxic heavy metals such as cadmium. In an attempt to increase the ability of bacterial cells to accumulate heavy metals, sheep MTII was produced in fusion with the maltose binding protein (MBP) and localized to the cytoplasmic or periplasmic compartments of Escherichia coli. For all metals tested, higher levels of bioaccumulation were measured with strains over-expressing MBP-MT in comparison with control strains. A marked bioaccumulation of Cd, As, Hg and Zn was observed in the strain over-expressing MBP-MT in the cytoplasm, whereas Cu was accumulated to higher levels when MBP-MT was over-expressed in the periplasm. Metal export systems may also play a role in this bioaccumulation. To illustrate this, we over-expressed MBP-MT in the cytoplasm of two mutant strains of E. coli affected in metal export. The first, deficient in the transporter ZntA described to export numerous divalent metal ions, showed increasing quantities of Zn, Cd, Hg and Pb being bioaccumulated. The second, strain LF20012, deficient in As export, showed that As was bioaccumulated in the form of arsenite. Furthermore, high quantities of accumulated metals, chelated by MBP-MT in the cytoplasm, conferred greater metal resistance levels to the cells in the presence of added toxic metals, such as Cd or Hg, while other metals showed toxic effects when the export systems were deficient. The strain over-expressing MBP-MT in the cytoplasm, in combination, with disruption of metal export systems, could be used to develop strategies for bioremediation.


Subject(s)
Escherichia coli/metabolism , Metallothionein/chemistry , Metals, Heavy/metabolism , Animals , Environmental Restoration and Remediation , Escherichia coli/drug effects , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Metals, Heavy/chemistry , Metals, Heavy/toxicity , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
Plant Physiol ; 158(3): 1267-78, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22234998

ABSTRACT

Carotenoids are considered to be the first line of defense of plants against singlet oxygen ((1)O(2)) toxicity because of their capacity to quench (1)O(2) as well as triplet chlorophylls through a physical mechanism involving transfer of excitation energy followed by thermal deactivation. Here, we show that leaf carotenoids are also able to quench (1)O(2) by a chemical mechanism involving their oxidation. In vitro oxidation of ß-carotene, lutein, and zeaxanthin by (1)O(2) generated various aldehydes and endoperoxides. A search for those molecules in Arabidopsis (Arabidopsis thaliana) leaves revealed the presence of (1)O(2)-specific endoperoxides in low-light-grown plants, indicating chronic oxidation of carotenoids by (1)O(2). ß-Carotene endoperoxide, but not xanthophyll endoperoxide, rapidly accumulated during high-light stress, and this accumulation was correlated with the extent of photosystem (PS) II photoinhibition and the expression of various (1)O(2) marker genes. The selective accumulation of ß-carotene endoperoxide points at the PSII reaction centers, rather than the PSII chlorophyll antennae, as a major site of (1)O(2) accumulation in plants under high-light stress. ß-Carotene endoperoxide was found to have a relatively fast turnover, decaying in the dark with a half time of about 6 h. This carotenoid metabolite provides an early index of (1)O(2) production in leaves, the occurrence of which precedes the accumulation of fatty acid oxidation products.


Subject(s)
Arabidopsis/chemistry , Carotenoids/chemistry , Singlet Oxygen/chemistry , Arabidopsis/genetics , Chlorophyll/chemistry , Gene Expression Regulation, Plant , Genes, Plant , Half-Life , Light , Oxidation-Reduction , Oxidative Stress , Photochemical Processes , Photosystem II Protein Complex/chemistry , Plant Leaves/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...