Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Phys Rev Lett ; 117(25): 253602, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-28036216

ABSTRACT

Electromagnetically induced transparency (EIT) in a ladder system involving a Rydberg level is known to yield giant optical nonlinearities for the probe field, even in the few-photon regime. This enhancement is due to the strong dipole-dipole interactions between Rydberg atoms and the resulting excitation blockade phenomenon. In order to study such highly correlated media, ad hoc models or low-excitation assumptions are generally used to tackle their dynamical response to optical fields. Here, we study the behavior of a cavity Rydberg-EIT setup in the nonequilibrium quantum field formalism, and we obtain analytic expressions for elastic and inelastic components of the cavity transmission spectrum, valid up to higher excitation numbers than previously achieved. This allows us to identify and interpret a polaritonic resonance structure, to our knowledge unreported so far.

2.
Opt Express ; 17(25): 22491-8, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-20052173

ABSTRACT

We present the Hanle EIT resonances obtained from the various segments of the Gaussian laser beam cross-section, selected by moving the small aperture (placed in front of the detector) radially along the laser beam. Significant differences in the Hanle lineshapes are observed depending on whether the central or outer parts of the Gaussian laser beam are detected. The line narrowing and two counter-sign peaks occur at outer, less intense parts of the beam. The theoretical model suggests that the EIT lineshapes in the laser wings are result of the interference of the laser light and coherently prepared atoms coming from the central part of the beam. By blocking the central part of the laser beam in front of the detector, narrower, and for high laser intensities, even more contrasted Hanle resonances are obtained.


Subject(s)
Lasers , Models, Theoretical , Computer Simulation , Light , Normal Distribution , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...