Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 41(5): e1900585, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32009277

ABSTRACT

3D liquid crystal elastomer (3D-LCE) foams are used to support long-term neuronal cultures for over 60 days. Sequential imaging shows that cell density remains relatively constant throughout the culture period while the number of cells per observational area increases. In a subset of samples, retinoic acid is used to stimulate extensive neuritic outgrowth and maturation of proliferated neurons within the LCEs, inducing a threefold increase in length with cells displaying morphologies indicative of mature neurons. Designed LCEs' micro-channels have a similar diameter to endogenous parenchymal arterioles, ensuring that neurons throughout the construct have constant access to growth media during extended experiments. Here it is shown that 3D-LCEs provide a unique environment and simple method to longitudinally study spatial neuronal function, not possible in conventional culture environments, with simplistic integration into existing methodological pipelines.


Subject(s)
Biocompatible Materials/chemistry , Elastomers/chemistry , Liquid Crystals/chemistry , Neurons/cytology , Tissue Scaffolds/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Liquid Crystals/ultrastructure , Porosity , Tretinoin/pharmacology
2.
J Vis Exp ; (122)2017 04 11.
Article in English | MEDLINE | ID: mdl-28448030

ABSTRACT

Here, we present a step-by-step preparation of a 3D, biodegradable, foam-like cell scaffold. These scaffolds were prepared by cross-linking star block co-polymers featuring cholesterol units as side-chain pendant groups, resulting in smectic-A (SmA) liquid crystal elastomers (LCEs). Foam-like scaffolds, prepared using metal templates, feature interconnected microchannels, making them suitable as 3D cell culture scaffolds. The combined properties of the regular structure of the metal foam and of the elastomer result in a 3D cell scaffold that promotes not only higher cell proliferation compared to conventional porous templated films, but also better management of mass transport (i.e., nutrients, gases, waste, etc.). The nature of the metal template allows for the easy manipulation of foam shapes (i.e., rolls or films) and for the preparation of scaffolds of different pore sizes for different cell studies while preserving the interconnected porous nature of the template. The etching process does not affect the chemistry of the elastomers, preserving their biocompatible and biodegradable nature. We show that these smectic LCEs, when grown for extensive time periods, enable the study of clinically relevant and complex tissue constructs while promoting the growth and proliferation of cells.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Elastomers/chemistry , Elastomers/chemical synthesis , Liquid Crystals/chemistry , Biocompatible Materials/pharmacology , Cell Count , Cell Culture Techniques , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Porosity , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...