Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 10(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34579403

ABSTRACT

Centaurium erythraea (centaury) is a medicinal plant with exceptional developmental plasticity in vitro and vigorous, often spontaneous, regeneration via shoot organogenesis and somatic embryogenesis, during which arabinogalactan proteins (AGPs) play an important role. AGPs are highly glycosylated proteins belonging to the super family of O-glycosylated plant cell surface hydroxyproline-rich glycoproteins (HRGPs). HRGPs/AGPs are intrinsically disordered and not well conserved, making their homology-based mining ineffective. We have applied a recently developed pipeline for HRGP/AGP mining, ragp, which is based on machine learning prediction of proline hydroxylation, to identify HRGP sequences in centaury transcriptome and to classify them into motif and amino acid bias (MAAB) classes. AGP sequences with low AG glycomotif representation were also identified. Six members of each of the three AGP subclasses, fasciclin-like AGPs, receptor kinase-like AGPs and AG peptides, were selected for phylogenetic and expression analyses. The expression of these 18 genes was recorded over 48 h following leaf mechanical wounding, as well as in 16 tissue samples representing plants from nature, plants cultivated in vitro, and developmental stages during shoot organogenesis and somatic embryogenesis. None of the selected genes were upregulated during both wounding recovery and regeneration. Possible functions of AGPs with the most interesting expression profiles are discussed.

2.
Plants (Basel) ; 10(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494461

ABSTRACT

Somatic embryogenesis (SE) is a developmental process during which plant somatic cells, under suitable conditions, produce embryogenic cells that develop into somatic embryos (se). SE is the most important method for plant propagation in vitro, having both fundamental and applicative significance. SE can be induced from different tissues and organs, but when se are used as explants, the process is recognized as secondary or cyclic SE. We induced secondary SE in Centaurium erythraea by application of 2,4-dichlorophenoxyacetic acid (2,4-D) and N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU). A medium containing 0.1 mgL-1 2,4-D and 0.25 mgL-1 CPPU was optimal in terms of the number of primary SE explants forming se, the number of well-developed se per explant, and morphological appearance of the obtained se. These concentrations allowed SE to progress through three cycles, whereas at higher concentrations of 0.2 mgL-1 2,4-D and 0.5 mgL-1 CPPU, only two cycles were achieved. Histological analysis revealed that secondary se are formed both directly and indirectly. Secondary SE readily germinated and converted into plantlets. Induction of cyclic SE contributes to the conservation efforts of this endangered medicinal plant and expands the spectrum of in vitro developmental pathways described in centaury-an emerging model in developmental biology.

SELECTION OF CITATIONS
SEARCH DETAIL