Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687124

ABSTRACT

There is growing interest in the opportunities regarding construction and demolition wastes, such as glass and metal powders, for developing a circular economy and their transformation into new materials. This management and recycling of construction and demolition waste offers environmental benefits and conservation of natural resources. In this paper, new magnetic composite materials were prepared by wet chemical synthesis methods using crushed glasses and iron and steel waste powders as raw materials. The prepared iron-silicate composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis, infrared (IR), ultraviolet-visible, and electron paramagnetic resonance (EPR) spectroscopy, and magnetic measurements. The XRD data confirm the formation of varied crystalline phases of the iron ions. The presence of the Fe3O4 crystalline phase was detected in the composites containing the iron waste powders. The inspection of the SEM micrographs revealed slightly better homogeneity for the composite material containing larger amounts of iron waste and heterogeneous morphology with cracks and random crystallinity for the composite doped with steel waste. By doping with different contents of iron or steel waste powder, structural modifications in the silicate network and the formation of new bands in the IR spectra were evidenced. The UV-Vis spectra were characterized by the absorption peaks for both the tetrahedral and octahedral geometries of the Fe3+ ions and the octahedral coordination of the Fe2+ ions with oxygen anions. The EPR data show resonance lines with g ~2, 4.3, and 6.4, corresponding to the Fe3+ ions. Using hysteresis curves, the superparamagnetic properties of the iron-silicate composites were evidenced.

2.
Materials (Basel) ; 13(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182348

ABSTRACT

New antimony phosphate glasses doped with samarium (III) oxide and co-doped with copper metallic nanoparticles (CuNPs) were obtained by the melt quenching technique. The samples were analyzed by X-ray diffraction analysis (XRD), electron paramagnetic resonance (EPR), ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopies. XRD data suggested that all the obtained samples showed an amorphous nature. EPR data suggested the existence of Cu2+ ions octahedrally surrounded by six oxygen atoms. The dipole-dipole interactions between Cu2+ ions were predominant. UV-Vis spectra revealed the presence of Sm3+ and Cu2+ ions in the samples. The values for nephelauxetic and bonding parameters were also calculated. The negative values obtained for bonding parameter indicate an ionic character of the bonds from the glass network. Photoluminescence spectra exhibited emissions from samarium ions and revealed the influence of dopant nature on of rare-earth ions emissions. The obtained results indicate that the studied materials are suitable for solid state lasers.

3.
J Mol Model ; 17(1): 165-71, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20401674

ABSTRACT

Glasses in the system xGd2O3·(100-x)[GeO2·V2O5] with 0 ≤ x ≤ 20 mol% have been prepared from the melt quenching method. In this paper, we investigated changes in germanium coordination number in gadolinium-vanadate-germanate glasses through molar volume analysis, measurements of densities, investigations of FTIR and UV-VIS spectroscopy, calculations of density functional theory (DFT). Analyzing the structural changes resulted from the IR spectra we found that the gadolinium ions have a pronounced affinity toward [VO4] structural units which contain non-bridging oxygens necessary for the charge compensation. The introduction of the excess of oxygen yields the formation of [VO5] structural units. This attains maximum value at 5 mol% Gd2O3, in agreement with the density measurements. Further, the addition of the surplus of oxygen implies the transformation of [VO5] to [VO4] structural units and the formation of VO4⁻³ orthovanadate structural units. The UV-VIS spectra show a broad UV absorption band located in the 300-500 nm region. These bands are assumed to originate from the combination of vanadium ions possibly present in the three states of valence. The presence of Ge-Ge wrong bonds attains its maximum values in the samples with x = 5 and 15 mol% Gd2O3 (bands centered in the 250-300 nm range). DFT calculations show the massive vibrations of the [VO(n)] structural units coupled with each other via [GeO6] and [GeO4] structural units. This leads to the splitting of the bridge modes and a multiplication of the number of these bands.


Subject(s)
Gadolinium/chemistry , Glass/chemistry , Models, Chemical , Vanadates/chemistry , Spectroscopy, Fourier Transform Infrared
4.
J Mol Model ; 17(8): 2103-11, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21174135

ABSTRACT

In this work, the effects of iron ion intercalations on lead-tellurate glasses were investigated via FTIR, Raman and UV-Vis spectroscopies. This homogeneous glass system has compositions xFe(2)O(3)·(100-x)[4TeO(2)·PbO(2)], where x = 0-60 mol%. The presented observations in these mechanisms show that the lead ions have a pronounced affinity towards [TeO(3)] structural units, resulting in the deformation of the Te-O-Te linkages, and leading to the intercalation of [PbO( n )] (n = 3, 4) and [FeO( n )] (n = 4, 6) entities in the [TeO(4)] chain network. The formation of negatively charged [FeO(4)](1-) structural units implies the attraction of Pb(2+) ions in order to compensate for this electrical charge. Upon increasing the Fe(2)O(3) content to 60 mol%, the network can accommodate an excess of oxygen through the formation of [FeO(6)] structural units and the conversion of [TeO(4)] into [TeO(3)] structural units. For even higher Fe(2)O(3) contents, Raman spectra indicate a greater degree of depolymerization of the vitreous network than FTIR spectra do. The bands due to the Pb-O bond vibrations are very strongly polarized and the [TeO(4)] structural units convert into [TeO(3)] units via an intermediate coordination stage termed "[TeO(3+1)]" structural units. Our UV-Vis spectroscopic data show two mechanisms: (i) the conversion of the Fe(3+) to Fe(2+) at the same time as the oxidation of Pb(2+) to Pb(+4) ions for samples with low Fe(2)O(3) contents; (ii) when the Fe(2)O(3) content is high (x ≥ 50 mol%), the Fe(2+) ions capture positive holes and are transferred to Fe(3+) ions through a photochemical reaction, while the Pb(2+) ions are formed by the reduction of Pb(4+) ions. DFT calculations show that the addition of Fe(2)O(3) to lead-tellurate glasses seems to break the axial Te-O bonds, and the [TeO(4)] structural units are gradually transformed into [TeO(3+1)]- and [TeO(3)]-type polyhedra. Analyzing these data further indicates a gradual conversion of the lead ions from covalent to ionic environment. There is then a charge transfer between the tri- and tetracoordinated tellurium atoms due to the capacity of the lead-tellurate network to form the appropriate coordination environments containing structural units of opposite charge, such as iron ions, [FeO(4)](1-).


Subject(s)
Glass/chemistry , Iron/chemistry , Lead/chemistry , Tellurium/chemistry , Computer Simulation , Models, Molecular , Molecular Structure , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis , Spectrum Analysis, Raman
5.
J Mol Model ; 16(8): 1333-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20127395

ABSTRACT

The structural properties of the xTeO(2) x (1-x)B(2)O(3) glasses (x = 0.6; 0.7) were investigated by FT-IR spectroscopy. From the analysis of the FTIR spectra, it is reasonable to assume that by the increasing of boron ions content, the tetrahedral [BO(4)] units are gradually replaced by the trigonal [BO(3)] units. The increase in the number of non-bridging oxygen atoms would decrease the connectivity of the glass network and will yield the depolymerization of the borate chains. The molecular structure and vibrational frequencies of the proposed structural models have been studied by exploring the density functional theory (DFT) calculations. The FTIR spectra of the xTeO(2) x (1-x)B(2)O(3) vitreous systems were compared with the calculated spectrum. This procedure allowed us to assign most of the observed IR bands.


Subject(s)
Borates/chemistry , Glass/chemistry , Tellurium/chemistry , Electrons , Models, Molecular , Spectroscopy, Fourier Transform Infrared , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...