Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675586

ABSTRACT

Allergic rhinitis (AR) is a prevalent inflammatory condition affecting millions globally, with current treatments often associated with significant side effects. To seek safer and more effective alternatives, natural sources like Urtica dioica (UD) are being explored. However, UD's mechanism of action remains unknown. Therefore, to elucidate it, we conducted an in silico evaluation of UD phytochemicals' effects on known therapeutic targets of allergic rhinitis: histamine receptor 1 (HR1), neurokinin 1 receptor (NK1R), cysteinyl leukotriene receptor 1 (CLR1), chemoattractant receptor-homologous molecule expressed on type 2 helper T cells (CRTH2), and bradykinin receptor type 2 (BK2R). The docking analysis identified amentoflavone, alpha-tocotrienol, neoxanthin, and isorhamnetin 3-O-rutinoside as possessing a high affinity for all the receptors. Subsequently, molecular dynamics (MD) simulations were used to analyze the key interactions; the free energy of binding was calculated through Generalized Born and Surface Area Solvation (MMGBSA), and the conformational changes were evaluated. Alpha-tocotrienol exhibited a high affinity while also inducing positive conformational changes across all targets. Amentoflavone primarily affected CRTH2, neoxanthin targeted NK1R, CRTH2, and BK2R, and isorhamnetin-3-O-rutinoside acted on NK1R. These findings suggest UD's potential to treat AR symptoms by inhibiting these targets. Notably, alpha-tocotrienol emerges as a promising multi-target inhibitor. Further in vivo and in vitro studies are needed for validation.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , Rhinitis, Allergic , Urtica dioica , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Rhinitis, Allergic/drug therapy , Humans , Urtica dioica/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
2.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36978823

ABSTRACT

The Yucca genus encompasses about 50 species native to North America. Species within the Yucca genus have been used in traditional medicine to treat pathologies related to inflammation. Despite its historical use and the popular notion of its antioxidant and anti-inflammatory properties, there is a limited amount of research on this genus. To better understand these properties, this work aimed to analyze phytochemical composition through documentary research. This will provide a better understanding of the molecules and the mechanisms of action that confer such antioxidant and anti-inflammatory properties. About 92 phytochemicals present within the genus have reported antioxidant or anti-inflammatory effects. It has been suggested that the antioxidant and anti-inflammatory properties are mainly generated through its free radical scavenging activity, the inhibition of arachidonic acid metabolism, the decrease in TNF-α (Tumor necrosis factor-α), IL-6 (Interleukin-6), iNOS (Inducible nitric oxide synthase), and IL-1ß (Interleukin 1ß) concentration, the increase of GPx (Glutathione peroxidase), CAT (Catalase), and SOD (Superoxide dismutase) concentration, and the inhibition of the MAPK (Mitogen-Activated Protein Kinase), and NF-κB (Nuclear factor kappa B), and the activation of the Nrf2 (Nuclear factor erythroid 2-related factor) signaling pathway. These studies provide evidence of its use in traditional medicine against pathologies related to inflammation. However, more models and studies are needed to properly understand the activity of most plants within the genus, its potency, and the feasibility of its use to help manage or treat chronic inflammation.

3.
Biol Trace Elem Res ; 201(4): 1695-1703, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35526205

ABSTRACT

The objective of this review was to analyze the effect of dietary selenium on oxidative stress in horses by considering past and recent bibliographic sources. Some research was done on oxidative stress, related pathologies and how selenium regulates oxidative stress. Oxidizing molecules are molecules that can accept electrons from the substances with which they react. Oxidizing These molecules, of oxidizing, are found naturally in any organism, and there are antioxidant mechanisms that regulate its activity. However, when the body is stressed, oxidizing molecules outperform the antioxidants, causing an imbalance known as oxidative stress. Among antioxidant molecules, selenium can act as an important antioxidant in the body. The antioxidant activity is based on an enzyme called glutathione peroxidase, which depends on selenium and controls the activity of oxidizing molecules.


Subject(s)
Antioxidants , Selenium , Horses , Animals , Antioxidants/metabolism , Selenium/pharmacology , Oxidative Stress , Glutathione Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...