Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
Add more filters










Publication year range
2.
Nature ; 617(7962): 835-841, 2023 05.
Article in English | MEDLINE | ID: mdl-37198487

ABSTRACT

Cellular processes are the product of interactions between biomolecules, which associate to form biologically active complexes1. These interactions are mediated by intermolecular contacts, which if disrupted, lead to alterations in cell physiology. Nevertheless, the formation of intermolecular contacts nearly universally requires changes in the conformations of the interacting biomolecules. As a result, binding affinity and cellular activity crucially depend both on the strength of the contacts and on the inherent propensities to form binding-competent conformational states2,3. Thus, conformational penalties are ubiquitous in biology and must be known in order to quantitatively model binding energetics for protein and nucleic acid interactions4,5. However, conceptual and technological limitations have hindered our ability to dissect and quantitatively measure how conformational propensities affect cellular activity. Here we systematically altered and determined the propensities for forming the protein-bound conformation of HIV-1 TAR RNA. These propensities quantitatively predicted the binding affinities of TAR to the RNA-binding region of the Tat protein and predicted the extent of HIV-1 Tat-dependent transactivation in cells. Our results establish the role of ensemble-based conformational propensities in cellular activity and reveal an example of a cellular process driven by an exceptionally rare and short-lived RNA conformational state.


Subject(s)
HIV Long Terminal Repeat , HIV-1 , Nucleic Acid Conformation , RNA, Viral , Transcriptional Activation , tat Gene Products, Human Immunodeficiency Virus , HIV Long Terminal Repeat/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/metabolism , HIV-1/genetics , HIV-1/metabolism
3.
Mol Ther Methods Clin Dev ; 29: 108-119, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37021039

ABSTRACT

Glycogen storage disease type Ia (GSD Ia) is the inherited deficiency of glucose-6-phosphatase (G6Pase), associated with life-threatening hypoglycemia and long-term complications, including hepatocellular carcinoma formation. Gene replacement therapy fails to stably reverse G6Pase deficiency. We attempted genome editing using two adeno-associated virus vectors, one that expressed Staphylococcus aureus Cas9 protein and a second containing a donor transgene encoding G6Pase, in a dog model for GSD Ia. We demonstrated donor transgene integration in the liver of three adult-treated dogs accompanied by stable G6Pase expression and correction of hypoglycemia during fasting. Two puppies with GSD Ia were treated by genome editing that achieved donor transgene integration in the liver. Integration frequency ranged from 0.5% to 1% for all dogs. In adult-treated dogs, anti-SaCas9 antibodies were detected before genome editing, reflecting prior exposure to S. aureus. Nuclease activity was low, as reflected by a low percentage of indel formation at the predicted site of SaCas9 cutting that indicated double-stranded breaks followed by non-homologous end-joining. Thus, genome editing can integrate a therapeutic transgene in the liver of a large animal model, either early or later in life, and further development is warranted to provide a more stable treatment for GSD Ia.

5.
Nat Microbiol ; 7(12): 2101-2113, 2022 12.
Article in English | MEDLINE | ID: mdl-36376394

ABSTRACT

After viral entry and reverse transcription, HIV-1 proviruses that fail to integrate are epigenetically silenced, but the underlying mechanism has remained unclear. Using a genome-wide CRISPR/Cas9 knockout screen, we identified the host SMC5/6 complex as essential for this epigenetic silencing. We show that SMC5/6 binds to and then SUMOylates unintegrated chromatinized HIV-1 DNA. Inhibition of SUMOylation, either by point mutagenesis of the SMC5/6 component NSMCE2-a SUMO E3 ligase-or using the SUMOylation inhibitor TAK-981, prevents epigenetic silencing, enables transcription from unintegrated HIV-1 DNA and rescues the replication of integrase-deficient HIV-1. Finally, we show that blocking SMC5/6 complex expression, or inhibiting its SUMOylation activity, suppresses the establishment of latent HIV-1 infections in both CD4+ T cell lines and primary human T cells. Collectively, our data show that the SMC5/6 complex plays a direct role in mediating the establishment of HIV-1 latency by epigenetically silencing integration-competent HIV-1 proviruses before integration.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/physiology , HIV Infections/genetics , Virus Latency/genetics , Proviruses/genetics , Proviruses/metabolism , DNA , Epigenesis, Genetic , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Ligases/genetics
6.
RNA ; 27(11): 1400-1411, 2021 11.
Article in English | MEDLINE | ID: mdl-34376564

ABSTRACT

Pseudouridine (Ψ) is the most common noncanonical ribonucleoside present on mammalian noncoding RNAs (ncRNAs), including rRNAs, tRNAs, and snRNAs, where it contributes ∼7% of the total uridine level. However, Ψ constitutes only ∼0.1% of the uridines present on mRNAs and its effect on mRNA function remains unclear. Ψ residues have been shown to inhibit the detection of exogenous RNA transcripts by host innate immune factors, thus raising the possibility that viruses might have subverted the addition of Ψ residues to mRNAs by host pseudouridine synthase (PUS) enzymes as a way to inhibit antiviral responses in infected cells. Here, we describe and validate a novel antibody-based Ψ mapping technique called photo-crosslinking-assisted Ψ sequencing (PA-Ψ-seq) and use it to map Ψ residues on not only multiple cellular RNAs but also on the mRNAs and genomic RNA encoded by HIV-1. We describe 293T-derived cell lines in which human PUS enzymes previously reported to add Ψ residues to human mRNAs, specifically PUS1, PUS7, and TRUB1/PUS4, were inactivated by gene editing. Surprisingly, while this allowed us to assign several sites of Ψ addition on cellular mRNAs to each of these three PUS enzymes, Ψ sites present on HIV-1 transcripts remained unaffected. Moreover, loss of PUS1, PUS7, or TRUB1 function did not significantly reduce the level of Ψ residues detected on total human mRNA below the ∼0.1% level seen in wild-type cells, thus implying that the PUS enzyme(s) that adds the bulk of Ψ residues to human mRNAs remains to be defined.


Subject(s)
Antibodies, Monoclonal/immunology , Gene Editing , Intramolecular Transferases/metabolism , Pseudouridine/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA, Viral/metabolism , HEK293 Cells , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Humans , Hydro-Lyases/antagonists & inhibitors , Hydro-Lyases/genetics , Hydro-Lyases/immunology , Hydro-Lyases/metabolism , Intramolecular Transferases/antagonists & inhibitors , Intramolecular Transferases/genetics , Intramolecular Transferases/immunology , Pseudouridine/immunology , RNA, Messenger/genetics , RNA, Viral/genetics
7.
Methods Mol Biol ; 2298: 123-134, 2021.
Article in English | MEDLINE | ID: mdl-34085242

ABSTRACT

Epitranscriptomic RNA modifications function as an important layer of gene regulation that modulates the function of RNA transcripts. A key step in understanding how RNA modifications regulate biological processes is the mapping of their locations, which is most commonly done by RNA immunoprecipitation (RIP) using modification-specific antibodies. Here, we describe the use of a photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP) method, in conjunction with RNA modification-specific antibodies, to map modification sites. First described as photo-crosslinking-assisted m6A sequencing (PA-m6A-seq), this method allows the mapping of RNA modifications at a higher resolution, with lower background than traditional RIP, and can be adapted to any RNA modification for which a specific antibody is available.


Subject(s)
RNA Processing, Post-Transcriptional/genetics , RNA/genetics , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Humans , Immunoprecipitation/methods , Ribonucleosides/genetics , Transcriptome/genetics
8.
Genes Dev ; 35(13-14): 992-1004, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34140354

ABSTRACT

Previous work has demonstrated that the epitranscriptomic addition of m6A to viral transcripts can promote the replication and pathogenicity of a wide range of DNA and RNA viruses, including HIV-1, yet the underlying mechanisms responsible for this effect have remained unclear. It is known that m6A function is largely mediated by cellular m6A binding proteins or readers, yet how these regulate viral gene expression in general, and HIV-1 gene expression in particular, has been controversial. Here, we confirm that m6A addition indeed regulates HIV-1 RNA expression and demonstrate that this effect is largely mediated by the nuclear m6A reader YTHDC1 and the cytoplasmic m6A reader YTHDF2. Both YTHDC1 and YTHDF2 bind to multiple distinct and overlapping sites on the HIV-1 RNA genome, with YTHDC1 recruitment serving to regulate the alternative splicing of HIV-1 RNAs. Unexpectedly, while YTHDF2 binding to m6A residues present on cellular mRNAs resulted in their destabilization as previously reported, YTHDF2 binding to m6A sites on HIV-1 transcripts resulted in a marked increase in the stability of these viral RNAs. Thus, YTHDF2 binding can exert diametrically opposite effects on RNA stability, depending on RNA sequence context.


Subject(s)
HIV-1 , Adenosine/metabolism , Alternative Splicing , HIV-1/genetics , HIV-1/metabolism , RNA Splicing , RNA Stability/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism
9.
J Virol ; 95(13): e0028521, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33883218

ABSTRACT

We previously reported that the normally essential step of integration of the HIV-1 proviral DNA intermediate into the host cell genome becomes dispensable in T cells that express the human T cell leukemia virus 1 (HTLV-1) Tax protein, a known activator of cellular NF-κB. The rescue of integrase (IN)-deficient HIV-1 replication by Tax results from the strong activation of transcription from the long terminal repeat (LTR) promoter on episomal HIV-1 DNA, an effect that is closely correlated with the recruitment of activating epigenetic marks, such as H3Ac, and depletion of repressive epigenetic marks, such as H3K9me3, from chromatinized unintegrated proviruses. In addition, activation of transcription from unintegrated HIV-1 DNA coincides with the recruitment of NF-κB to the two NF-κB binding sites found in the HIV-1 LTR enhancer. Here, we report that the recruitment of NF-κB to unintegrated viral DNA precedes, and is a prerequisite for, Tax-induced changes in epigenetic marks, so that an IN- HIV-1 mutant lacking both LTR NF-κB sites is entirely nonresponsive to Tax and fails to undergo the epigenetic changes listed above. Interestingly, we found that induction of Tax expression at 24 h postinfection, when unintegrated HIV-1 DNA is already fully repressed by inhibitory chromatin modifications, is able to effectively reverse the epigenetic silencing of that DNA and rescue viral gene expression. Finally, we report that heterologous promoters introduced into IN-deficient HIV-1-based vectors are transcriptionally active even in the absence of Tax and do not increase their activity when the HIV-1 promoter and enhancer, located in the LTR U3 region, are deleted, as has been recently proposed. IMPORTANCE Integrase-deficient expression vectors based on HIV-1 are becoming increasingly popular as tools for gene therapy in vivo due to their inability to cause insertional mutagenesis. However, many IN- lentiviral vectors are able to achieve only low levels of gene expression, and methods to increase this low level have not been extensively explored. Here, we analyzed how the HTLV-1 Tax protein is able to rescue the replication of IN- HIV-1 in T cells, and we describe IN- lentiviral vectors, lacking any inserted origin of replication, that are able to express a heterologous gene effectively.


Subject(s)
Gene Expression Regulation, Viral/genetics , Gene Products, tax/metabolism , HIV Integrase/genetics , HIV-1/genetics , Virus Integration/genetics , Cell Line , DNA, Viral/genetics , Enzyme Activation/genetics , Gene Expression/genetics , HEK293 Cells , HIV Integrase/deficiency , Human T-lymphotropic virus 1/metabolism , Humans , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , Proviruses/genetics , Virus Replication/genetics
10.
RNA ; 27(1): 12-26, 2021 01.
Article in English | MEDLINE | ID: mdl-33028652

ABSTRACT

Identifying small molecules that selectively bind an RNA target while discriminating against all other cellular RNAs is an important challenge in RNA-targeted drug discovery. Much effort has been directed toward identifying drug-like small molecules that minimize electrostatic and stacking interactions that lead to nonspecific binding of aminoglycosides and intercalators to many stem-loop RNAs. Many such compounds have been reported to bind RNAs and inhibit their cellular activities. However, target engagement and cellular selectivity assays are not routinely performed, and it is often unclear whether functional activity directly results from specific binding to the target RNA. Here, we examined the propensities of three drug-like compounds, previously shown to bind and inhibit the cellular activities of distinct stem-loop RNAs, to bind and inhibit the cellular activities of two unrelated HIV-1 stem-loop RNAs: the transactivation response element (TAR) and the rev response element stem IIB (RREIIB). All compounds bound TAR and RREIIB in vitro, and two inhibited TAR-dependent transactivation and RRE-dependent viral export in cell-based assays while also exhibiting off-target interactions consistent with nonspecific activity. A survey of X-ray and NMR structures of RNA-small molecule complexes revealed that aminoglycosides and drug-like molecules form hydrogen bonds with functional groups commonly accessible in canonical stem-loop RNA motifs, in contrast to ligands that specifically bind riboswitches. Our results demonstrate that drug-like molecules can nonspecifically bind stem-loop RNAs most likely through hydrogen bonding and electrostatic interactions and reinforce the importance of assaying for off-target interactions and RNA selectivity in vitro and in cells when assessing novel RNA-binders.


Subject(s)
Aminoglycosides/pharmacology , Genes, env/drug effects , HIV Long Terminal Repeat/drug effects , RNA, Viral/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Aminoglycosides/chemistry , Aminoglycosides/metabolism , Base Pairing , Base Sequence , Binding Sites , Biological Assay , Drug Discovery , HIV-1/drug effects , HIV-1/genetics , HIV-1/metabolism , Humans , Hydrogen Bonding , Isoquinolines/chemistry , Isoquinolines/metabolism , Isoquinolines/pharmacology , Nucleic Acid Conformation , Pentamidine/chemistry , Pentamidine/metabolism , Pentamidine/pharmacology , RNA, Viral/genetics , RNA, Viral/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Static Electricity , Transcriptional Activation/drug effects , Yohimbine/chemistry , Yohimbine/metabolism , Yohimbine/pharmacology
11.
Nat Rev Microbiol ; 18(10): 559-570, 2020 10.
Article in English | MEDLINE | ID: mdl-32533130

ABSTRACT

Eukaryotic gene expression is regulated not only by genomic enhancers and promoters, but also by covalent modifications added to both chromatin and RNAs. Whereas cellular gene expression may be either enhanced or inhibited by specific epigenetic modifications deposited on histones (in particular, histone H3), these epigenetic modifications can also repress viral gene expression, potentially functioning as a potent antiviral innate immune response in DNA virus-infected cells. However, viruses have evolved countermeasures that prevent the epigenetic silencing of their genes during lytic replication, and they can also take advantage of epigenetic silencing to establish latent infections. By contrast, the various covalent modifications added to RNAs, termed epitranscriptomic modifications, can positively regulate mRNA translation and/or stability, and both DNA and RNA viruses have evolved to utilize epitranscriptomic modifications as a means to maximize viral gene expression. As a consequence, both chromatin and RNA modifications could serve as novel targets for the development of antivirals. In this Review, we discuss how host epigenetic and epitranscriptomic processes regulate viral gene expression at the levels of chromatin and RNA function, respectively, and explore how viruses modify, avoid or utilize these processes in order to regulate viral gene expression.


Subject(s)
DNA Viruses/genetics , Epigenesis, Genetic , Gene Expression Regulation, Viral , Host-Pathogen Interactions/genetics , RNA Processing, Post-Transcriptional , RNA Viruses/genetics , Animals , Antiviral Agents/pharmacology , Chromatin/chemistry , Chromatin/metabolism , Chromatin/virology , DNA Viruses/drug effects , DNA Viruses/metabolism , Eukaryotic Cells/drug effects , Eukaryotic Cells/metabolism , Eukaryotic Cells/virology , Histones/genetics , Histones/metabolism , Humans , Promoter Regions, Genetic , Protein Biosynthesis , RNA Viruses/drug effects , RNA Viruses/metabolism , Transcriptome , Virus Latency , Virus Replication
12.
Cell Host Microbe ; 28(2): 306-312.e6, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32533923

ABSTRACT

Epitranscriptomic RNA modifications, including methylation of adenine and cytidine residues, are now recognized as key regulators of both cellular and viral mRNA function. Moreover, acetylation of the N4 position of cytidine (ac4C) was recently reported to increase the translation and stability of cellular mRNAs. Here, we show that ac4C and N-acetyltransferase 10 (NAT10), the enzyme that adds ac4C to RNAs, have been subverted by human immunodeficiency virus 1 (HIV-1) to increase viral gene expression. HIV-1 transcripts are modified with ac4C at multiple discrete sites, and silent mutagenesis of these ac4C sites led to decreased HIV-1 gene expression. Similarly, loss of ac4C from viral transcripts due to depletion of NAT10 inhibited HIV-1 replication by reducing viral RNA stability. Interestingly, the NAT10 inhibitor remodelin could inhibit HIV-1 replication at concentrations that have no effect on cell viability, thus identifying ac4C addition as a potential target for antiviral drug development.


Subject(s)
Gene Expression Regulation, Viral/genetics , Gene Expression/drug effects , HIV-1/genetics , RNA Stability/drug effects , RNA, Viral/genetics , Acetylation/drug effects , Cell Line , Cytidine/metabolism , Female , Gene Expression Regulation, Viral/drug effects , HEK293 Cells , HIV-1/growth & development , Humans , Hydrazones/pharmacology , Male , N-Terminal Acetyltransferases/metabolism , RNA Stability/genetics , Thiazoles/pharmacology , Virus Replication/physiology
13.
mBio ; 11(3)2020 06 02.
Article in English | MEDLINE | ID: mdl-32487757

ABSTRACT

Integration of the proviral DNA intermediate into the host cell genome normally represents an essential step in the retroviral life cycle. While the reason(s) for this requirement remains unclear, it is known that unintegrated proviral DNA is epigenetically silenced. Here, we demonstrate that human immunodeficiency virus 1 (HIV-1) mutants lacking a functional integrase (IN) can mount a robust, spreading infection in cells expressing the Tax transcription factor encoded by human T-cell leukemia virus 1 (HTLV-1). In these cells, HIV-1 forms episomal DNA circles, analogous to hepatitis B virus (HBV) covalently closed circular DNAs (cccDNAs), that are transcriptionally active and fully capable of supporting viral replication. In the presence of Tax, induced NF-κB proteins are recruited to the long terminal repeat (LTR) promoters present on unintegrated HIV-1 DNA, and this recruitment in turn correlates with the loss of inhibitory epigenetic marks and the acquisition of activating marks on histones bound to viral DNA. Therefore, HIV-1 is capable of replication in the absence of integrase function if the epigenetic silencing of unintegrated viral DNA can be prevented or reversed.IMPORTANCE While retroviral DNA is synthesized normally after infection by integrase-deficient viruses, the resultant episomal DNA is then epigenetically silenced. Here, we show that expression of the Tax transcription factor encoded by a second human retrovirus, HTLV-1, prevents or reverses the epigenetic silencing of unintegrated HIV-1 DNA and instead induces the addition of activating epigenetic marks and the recruitment of NF-κB/Rel proteins to the HIV-1 LTR promoter. Moreover, in the presence of Tax, the HIV-1 DNA circles that form in the absence of integrase function are not only efficiently transcribed but also support a spreading, pathogenic integrase-deficient (IN-) HIV-1 infection. Thus, retroviruses have the potential to replicate without integration, as is indeed seen with HBV. Moreover, these data suggest that integrase inhibitors may be less effective in the treatment of HIV-1 infections in individuals who are also coinfected with HTLV-1.


Subject(s)
Epigenesis, Genetic , HIV Integrase/genetics , HIV-1/genetics , Virus Integration/genetics , Virus Replication/genetics , A549 Cells , Genes, pX/genetics , HEK293 Cells , HIV-1/physiology , HeLa Cells , Human T-lymphotropic virus 1/genetics , Humans , Promoter Regions, Genetic , THP-1 Cells , Transcription, Genetic
14.
Cell Rep ; 30(8): 2472-2480.e4, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32101729

ABSTRACT

Low-abundance short-lived non-native conformations referred to as excited states (ESs) are increasingly observed in vitro and implicated in the folding and biological activities of regulatory RNAs. We developed an approach for assessing the relative abundance of RNA ESs within the functional cellular context. Nuclear magnetic resonance (NMR) spectroscopy was used to estimate the degree to which substitution mutations bias conformational equilibria toward the inactive ES in vitro. The cellular activity of the ES-stabilizing mutants was used as an indirect measure of the conformational equilibria within the functional cellular context. Compensatory mutations that restore the ground-state conformation were used to control for changes in sequence. Using this approach, we show that the ESs of two regulatory RNAs from HIV-1, the transactivation response element (TAR) and the Rev response element (RRE), likely form in cells with abundances comparable to those measured in vitro, and their targeted stabilization may provide an avenue for developing anti-HIV therapeutics.


Subject(s)
Cells/metabolism , Nucleic Acid Conformation , Cellular Microenvironment , Genes, env , HEK293 Cells , HeLa Cells , Humans , RNA Stability
15.
Cell Host Microbe ; 26(2): 217-227.e6, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31415754

ABSTRACT

How the covalent modification of mRNA ribonucleotides, termed epitranscriptomic modifications, alters mRNA function remains unclear. One issue has been the difficulty of quantifying these modifications. Using purified HIV-1 genomic RNA, we show that this RNA bears more epitranscriptomic modifications than the average cellular mRNA, with 5-methylcytosine (m5C) and 2'O-methyl modifications being particularly prevalent. The methyltransferase NSUN2 serves as the primary writer for m5C on HIV-1 RNAs. NSUN2 inactivation inhibits not only m5C addition to HIV-1 transcripts but also viral replication. This inhibition results from reduced HIV-1 protein, but not mRNA, expression, which in turn correlates with reduced ribosome binding to viral mRNAs. In addition, loss of m5C dysregulates the alternative splicing of viral RNAs. These data identify m5C as a post-transcriptional regulator of both splicing and function of HIV-1 mRNA, thereby affecting directly viral gene expression.


Subject(s)
5-Methylcytosine/pharmacology , Gene Expression Regulation, Viral , HIV-1/genetics , RNA, Viral/metabolism , Transcriptome , 5-Methylcytosine/metabolism , CD4-Positive T-Lymphocytes , Gene Expression Regulation, Viral/drug effects , HEK293 Cells , Humans , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/pharmacology , RNA Splicing , RNA, Messenger/metabolism , RNA, Viral/drug effects , Virion , Virus Replication/drug effects
16.
mBio ; 10(3)2019 06 11.
Article in English | MEDLINE | ID: mdl-31186331

ABSTRACT

While it has been known for several years that viral RNAs are subject to the addition of several distinct covalent modifications to individual nucleotides, collectively referred to as epitranscriptomic modifications, the effect of these editing events on viral gene expression has been controversial. Here, we report the purification of murine leukemia virus (MLV) genomic RNA to homogeneity and show that this viral RNA contains levels of N6-methyladenosine (m6A), 5-methylcytosine (m5C), and 2'O-methylated (Nm) ribonucleotides that are an order of magnitude higher than detected on bulk cellular mRNAs. Mapping of m6A and m5C residues on MLV transcripts identified multiple discrete editing sites and allowed the construction of MLV variants bearing silent mutations that removed a subset of these sites. Analysis of the replication potential of these mutants revealed a modest but significant attenuation in viral replication in 3T3 cells in culture. Consistent with a positive role for m6A and m5C in viral replication, we also demonstrate that overexpression of the key m6A reader protein YTHDF2 enhances MLV replication, while downregulation of the m5C writer NSUN2 inhibits MLV replication.IMPORTANCE The data presented in the present study demonstrate that MLV RNAs bear an exceptionally high level of the epitranscriptomic modifications m6A, m5C, and Nm, suggesting that these each facilitate some aspect of the viral replication cycle. Consistent with this hypothesis, we demonstrate that mutational removal of a subset of these m6A or m5C modifications from MLV transcripts inhibits MLV replication in cis, and a similar result was also observed upon manipulation of the level of expression of key cellular epitranscriptomic cofactors in trans Together, these results argue that the addition of several different epitranscriptomic modifications to viral transcripts stimulates viral gene expression and suggest that MLV has therefore evolved to maximize the level of these modifications that are added to viral RNAs.


Subject(s)
Adenosine/chemistry , Cytosine/chemistry , DNA Methylation , Leukemia Virus, Murine/genetics , Virus Replication , Gene Expression , Genome, Viral , Leukemia Virus, Murine/physiology , Methyltransferases/metabolism , RNA, Messenger , RNA, Viral/genetics
17.
Future Virol ; 13(7): 475-482, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30245733

ABSTRACT

AIM: The goal of this study was to determine if a single AAV vector, encoding Cas9 and guide RNAs specific for the HPV16 E6 and E7 genes, could inhibit the growth of an HPV16-induced tumor in vivo. MATERIALS & METHODS: We grew HPV16+, patient-derived anal cancer explants in immunodeficient mice and then challenged these by injection of AAV-based vectors encoding Cas9 and control or HPV16-specific guide RNAs. RESULTS & CONCLUSION: We observed a significant and selective reduction in tumor growth when the HPV16 E6 and E7 genes were targeted using Cas9. These studies provide proof of principle for the hypothesis that CRISPR/Cas has the potential to be used to selectively treat HPV-induced tumors in humans.

18.
Virology ; 520: 116-126, 2018 07.
Article in English | MEDLINE | ID: mdl-29857168

ABSTRACT

DNA editing using CRISPR/Cas has emerged as a potential treatment for diseases caused by pathogenic human DNA viruses. One potential target is HIV-1, which replicates via a chromosomally integrated DNA provirus. While CRISPR/Cas can protect T cells from de novo HIV-1 infection, HIV-1 frequently becomes resistant due to mutations in the chosen single guide RNA (sgRNA) target site. To address this problem, we asked whether an sgRNA targeted to a conserved, functionally critical HIV-1 sequence might prevent the selection of escape mutants. We report that two sgRNAs specific for the HIV-1 transactivation response (TAR) element produce opposite results: the TAR2 sgRNA rapidly selects for mutants that retain TAR function, but are no longer inhibited by Cas9, while the TAR1 sgRNA fails to select any replication competent TAR mutants, most probably because it is targeted to a region of TAR that is disrupted by even minor mutations.


Subject(s)
CRISPR-Cas Systems , HIV Long Terminal Repeat , HIV-1/genetics , Proviruses/genetics , Virus Inactivation , Clustered Regularly Interspaced Short Palindromic Repeats , HIV-1/physiology , Humans , Mutation , Proviruses/physiology , RNA, Guide, Kinetoplastida/genetics , Transcriptional Activation , Virus Integration/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
19.
RNA ; 24(9): 1172-1182, 2018 09.
Article in English | MEDLINE | ID: mdl-29903832

ABSTRACT

While the issue of whether RNA interference (RNAi) ever forms part of the antiviral innate immune response in mammalian somatic cells remains controversial, there is considerable evidence demonstrating that few, if any, viral small interfering RNAs (siRNAs) are produced in infected cells. Moreover, inhibition of RNAi by mutational inactivation of key RNAi factors, such as Dicer or Argonaute 2, fails to enhance virus replication. One potential explanation for this lack of inhibitory effect is that mammalian viruses encode viral suppressors of RNAi (VSRs) that are so effective that viral siRNAs are not produced in infected cells. Indeed, a number of mammalian VSRs have been described, of which the most prominent is the influenza A virus (IAV) NS1 protein, which has not only been reported to inhibit RNAi in plants and insects but also to prevent the production of viral siRNAs in IAV-infected human cells. Here, we confirm that an IAV mutant lacking NS1 indeed differs from wild-type IAV in that it induces the production of readily detectable levels of Dicer-dependent viral siRNAs in infected human cells. However, we also demonstrate that these siRNAs have little if any inhibitory effect on IAV gene expression. This is likely due, at least in part, to their inefficient loading into RNA-induced silencing complexes.


Subject(s)
DEAD-box RNA Helicases/genetics , Influenza A virus/physiology , RNA Interference , Ribonuclease III/genetics , Viral Nonstructural Proteins/genetics , HEK293 Cells , Host-Pathogen Interactions , Humans , Influenza A virus/genetics , Mutation , RNA, Viral/genetics , Sequence Analysis, RNA , Virus Replication
20.
PLoS Pathog ; 14(2): e1006919, 2018 02.
Article in English | MEDLINE | ID: mdl-29447282

ABSTRACT

Polyomaviruses are a family of small DNA tumor viruses that includes several pathogenic human members, including Merkel cell polyomavirus, BK virus and JC virus. As is characteristic of DNA tumor viruses, gene expression in polyomaviruses is temporally regulated into an early phase, consisting of the viral regulatory proteins, and a late phase, consisting of the viral structural proteins. Previously, the late transcripts expressed by the prototypic polyomavirus simian virus 40 (SV40) were reported to contain several adenosines bearing methyl groups at the N6 position (m6A), although the precise location of these m6A residues, and their phenotypic effects, have not been investigated. Here, we first demonstrate that overexpression of the key m6A reader protein YTHDF2 induces more rapid viral replication, and larger viral plaques, in SV40 infected BSC40 cells, while mutational inactivation of the endogenous YTHDF2 gene, or the m6A methyltransferase METTL3, has the opposite effect, thus suggesting a positive role for m6A in the regulation of SV40 gene expression. To directly test this hypothesis, we mapped sites of m6A addition on SV40 transcripts and identified two m6A sites on the viral early transcripts and eleven m6A sites on the late mRNAs. Using synonymous mutations, we inactivated the majority of the m6A sites on the SV40 late mRNAs and observed that the resultant viral mutant replicated more slowly than wild type SV40. Alternative splicing of SV40 late mRNAs was unaffected by the reduction in m6A residues and our data instead suggest that m6A enhances the translation of viral late transcripts. Together, these data argue that the addition of m6A residues to the late transcripts encoded by SV40 plays an important role in enhancing viral gene expression and, hence, replication.


Subject(s)
Adenosine/analogs & derivatives , RNA Processing, Post-Transcriptional/physiology , RNA, Messenger/metabolism , Simian virus 40/genetics , Viral Structural Proteins/genetics , Virus Replication/genetics , A549 Cells , Adenosine/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , Gene Expression Regulation, Viral , Genes, Viral , HEK293 Cells , Humans , Methylation , RNA, Viral/metabolism , Simian virus 40/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...