Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4737, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550294

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumors. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies. Here, we describe CAR T cells targeting tumor-associated glycoprotein-72 (TAG72), utilizing the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. CAR T cell-mediated IFNγ production facilitated by IL-12 signaling is required for tumor cell killing, which is recapitulated by engineering an optimized membrane-bound IL-12 (mbIL12) molecule in CAR T cells. These T cells show improved antigen-dependent T cell proliferation and recursive tumor cell killing in vitro, with robust in vivo efficacy in human ovarian cancer xenograft models. Locoregional administration of mbIL12-engineered CAR T cells promotes durable anti-tumor responses against both regional and systemic disease in mice. Safety and efficacy of mbIL12-engineered CAR T cells is demonstrated using an immunocompetent mouse model, with beneficial effects on the immunosuppressive tumor microenvironment. Collectively, our study features a clinically-applicable strategy to improve the efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting regional and systemic disease.


Subject(s)
Ovarian Neoplasms , Receptors, Chimeric Antigen , Female , Humans , Mice , Animals , Immunotherapy, Adoptive , Interleukin-12 , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Ovarian Neoplasms/therapy , Xenograft Model Antitumor Assays , Cell Line, Tumor , Tumor Microenvironment
2.
bioRxiv ; 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36711615

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumor microenvironments. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies, which are being harnessed to improve solid tumor CAR T cell therapies. Here, we describe fully optimized CAR T cells targeting tumor-associated glycoprotein-72 (TAG72) for the treatment of solid tumors, identifying the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. These findings have culminated into a phase 1 trial evaluating safety, feasibility, and bioactivity of TAG72-CAR T cells for the treatment of patients with advanced ovarian cancer ( NCT05225363 ). Preclinically, we found that CAR T cell-mediated IFNγ production facilitated by IL-12 signaling was required for tumor cell killing, which was recapitulated by expressing an optimized membrane-bound IL-12 (mbIL12) molecule on CAR T cells. Critically, mbIL12 cell surface expression and downstream signaling was induced and sustained only following CAR T cell activation. CAR T cells with mbIL12 demonstrated improved antigen-dependent T cell proliferation and potent cytotoxicity in recursive tumor cell killing assays in vitro and showed robust in vivo anti-tumor efficacy in human xenograft models of ovarian cancer peritoneal metastasis. Further, locoregional administration of TAG72-CAR T cells with antigen-dependent IL-12 signaling promoted durable anti-tumor responses against both regional and systemic disease in mice and was associated with improved systemic T cell persistence. Our study features a clinically-applicable strategy to improve the overall efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting both regional and systemic disease.

3.
Sci Total Environ ; 706: 135732, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31818575

ABSTRACT

In this study, we assessed the toxicological potencies of particulate matter (PM) emissions from a modern vehicle equipped with a gasoline direct injection (GDI) engine when operated on eight different fuels with varying aromatic hydrocarbon and ethanol contents. Testing was conducted over the LA92 driving cycle using a chassis dynamometer with a constant volume sampling system, where particles were collected onto Teflon filters. The extracted PM constituents were analyzed for their oxidative potential using the dithiothreitol (DTT) chemical assay and exposure-induced gene expression in human airway epithelial cells (BEAS-2B). Different trends of DTT activities were seen when testing PM samples in 100% aqueous buffer solutions versus elevated fraction of methanol in aqueous buffers (50:50), indicating the effect of solubility of organic PM constituents on the measured oxidative potential. Higher aromatics content in fuels corresponded to higher DTT activities in PM. Exposure to PM exhaust upregulated the expression of HMOX-1, but downregulated the expression of IL-6, TNF-α, CCL5 and NOS2 in BEAS-2B cells. The principal component regression analysis revealed different patterns of correlations. Aromatics content contributed to more significant PAH-mediated IL-6 downregulation, whereas ethanol content was associated with decreased downregulation of IL-6. Our findings highlighted the key role of fuel composition in modulating the toxicological responses to GDI PM emissions.


Subject(s)
Epithelial Cells , Gasoline , Air Pollutants , Ethanol , Humans , Particulate Matter , Vehicle Emissions
4.
Environ Sci Process Impacts ; 21(5): 856-866, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30942229

ABSTRACT

Carbonyls are reactive and electrophilic compounds found ubiquitously in the atmosphere. The interactions between atmospheric carbonyls and biological nucleophiles (e.g., thiol-containing compounds) have important implications on their toxicity, but the underlying mechanisms have not been fully understood. In this study, we used combined computational and experimental approaches to assess the reactivities of atmospheric carbonyls in respect to their electrophilic properties. Global electrophilicity indexes (ω) were calculated based on density functional theory. The reactivities of carbonyls with thiols were assessed using the dithiothreitol (DTT) assay as a surrogate of biological nucleophilic antioxidants. The computational results indicated that the ω of a given carbonyl compound is largely influenced by its molecular structure and adjacent functional groups. The calculated ω values showed a strong linear correlation with the logarithm of measured carbonyl mass-normalized DTT consumption rates (r2 = 0.8378 and 0.9899 for simple and α,ß-unsaturated carbonyls, respectively). The removal of DTT through the nucleophilic addition pathway was confirmed by the detection of carbonyl-DTT adducts using the gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) technique. Our results demonstrated that electrophilicity index can be potentially used as a molecular descriptor to predict toxicity of atmospheric carbonyls towards thiol-containing biomolecules. This work also highlights the significance of carbonyls in interpreting DTT-based aerosol oxidative potential.


Subject(s)
Organic Chemicals/chemistry , Aerosols , Antioxidants , Atmosphere/chemistry , Computer Simulation , Gas Chromatography-Mass Spectrometry , Molecular Structure , Oxidation-Reduction , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...