Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 9: 374, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19843336

ABSTRACT

BACKGROUND: MicroRNAs (MiRNAs) are short non-coding RNAs that control protein expression through various mechanisms. Their altered expression has been shown to be associated with various cancers. The aim of this study was to profile miRNA expression in colorectal cancer (CRC) and to analyze the function of specific miRNAs in CRC cells. MirVana miRNA Bioarrays were used to determine the miRNA expression profile in eight CRC cell line models, 45 human CRC samples of different stages, and four matched normal colon tissue samples. SW620 CRC cells were stably transduced with miR-143 or miR-145 expression vectors and analyzed in vitro for cell proliferation, cell differentiation and anchorage-independent growth. Signalling pathways associated with differentially expressed miRNAs were identified using a gene set enrichment analysis. RESULTS: The expression analysis of clinical CRC samples identified 37 miRNAs that were differentially expressed between CRC and normal tissue. Furthermore, several of these miRNAs were associated with CRC tumor progression including loss of miR-133a and gain of miR-224. We identified 11 common miRNAs that were differentially expressed between normal colon and CRC in both the cell line models and clinical samples. In vitro functional studies indicated that miR-143 and miR-145 appear to function in opposing manners to either inhibit or augment cell proliferation in a metastatic CRC model. The pathways targeted by miR-143 and miR-145 showed no significant overlap. Furthermore, gene expression analysis of metastatic versus non-metastatic isogenic cell lines indicated that miR-145 targets involved in cell cycle and neuregulin pathways were significantly down-regulated in the metastatic context. CONCLUSION: MiRNAs showing altered expression at different stages of CRC could be targets for CRC therapies and be further developed as potential diagnostic and prognostic analytes. The identified biological processes and signalling pathways collectively targeted by co-expressed miRNAs in CRC provide a basis for understanding the functional role of miRNAs in cancer.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/physiopathology , Gene Expression Profiling , Humans , MicroRNAs/metabolism , Neoplasm Metastasis
2.
Hum Mutat ; 29(4): 491-501, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18203200

ABSTRACT

ATP7B is a copper transporting P-type ATPase defective in the autosomal recessive copper storage disorder, Wilson disease (WND). Functional assessment of variants helps to distinguish normal from disease-causing variants and provides information on important amino acid residues. A total of 11 missense variants of ATP7B, originally identified in WND patients, were examined for their capacity to functionally complement a yeast mutant strain in which the yeast gene ortholog, CCC2, was disrupted. Solution structures of ATP7B domains were used to predict the effects of each variant on ATP7B structure. Three variants lie within the copper-binding domain and eight within the ATP-binding domain of ATP7B. All three ATP7B variants within the copper-binding domain and four within the ATP-binding domain showed full complementation of the yeast ccc2 phenotype. For the remaining four located in the ATP-binding domain, p.Glu1064Lys and p.Val1106Asp were unable to complement the yeast ccc2 high-affinity iron uptake deficiency phenotype, apparently due to mislocalization and/or change in conformation of the variant protein. p.Leu1083Phe exhibited a temperature-sensitive phenotype with partial complementation at 30 degrees C and a severe deficit at 37 degrees C. p.Met1169Val only partially complemented the ccc2 phenotype at 30 degrees C and 37 degrees C. Therefore, four variant positions were identified as important for copper transport and as disease-causing changes. Since the yeast assay specifically evaluates copper transport function, variants with normal transport could be defective in some other aspect of ATP7B function, particularly trafficking in mammalian cells. Functional assessment is critical for reliable use of mutation analysis as an aid to diagnosis of this clinically variable condition.


Subject(s)
Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Copper/metabolism , Genetic Variation , Hepatolenticular Degeneration/enzymology , Hepatolenticular Degeneration/genetics , Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/metabolism , Binding Sites/genetics , Cation Transport Proteins/chemistry , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Copper Transport Proteins , Copper-Transporting ATPases , Genetic Complementation Test , Hepatolenticular Degeneration/metabolism , Humans , Ion Transport , Models, Biological , Models, Molecular , Mutation, Missense , Phenotype , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Immunol Cell Biol ; 83(3): 217-23, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15877598

ABSTRACT

Mammalian genome sequencing has identified numerous genes requiring functional annotation. The discovery that dsRNA can direct gene-specific silencing in both model organisms and mammalian cells through RNA interference (RNAi) has provided a platform for dissecting the function of independent genes. The generation of large-scale RNAi libraries targeting all predicted genes within mouse, rat and human cells, combined with the large number of cell-based assays, provides a unique opportunity to perform high-throughput genetics in these complex cell systems. Many different formats exist for the generation of genome-wide RNAi libraries for use in mammalian cells. Furthermore, the use of these libraries in either genetic screens or genetic selections allows for the identification of known and novel genes involved in complex cellular phenotypes and biological processes, some of which underpin human disease. In this review, we examine genome-wide RNAi libraries used in model organisms and mammalian cells and provide examples of how these information rich reagents can be used for determining gene function, discovering novel therapeutic targets and dissecting signalling pathways, cellular processes and complex phenotypes.


Subject(s)
Gene Expression Regulation/genetics , Genomics/methods , RNA Interference , Animals , Caenorhabditis elegans/genetics , Drosophila melanogaster/genetics , Gene Library , Humans , RNA, Double-Stranded/genetics , Retroviridae/genetics
4.
Genomics ; 83(3): 473-81, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14962673

ABSTRACT

The carboxy-terminus of ATP7B, the protein defective in the copper-transport disorder Wilson disease, was investigated with respect to its role in copper delivery to the ferroxidase ceruloplasmin. We use yeast as a model system to assess the functional capabilities of ATP7B variants. The yeast ferroxidase, Fet3p, acquires copper from Ccc2p and cannot function if Ccc2p is impaired; expression of wild-type ATP7B in ccc2 yeast complements the iron-deficient phenotype. Our results demonstrate that the C-terminus of ATP7B is necessary for protein stability, as removal of the nonmembranous terminus leads to reduced protein levels and cessation of growth in iron-limited medium. Growth is partially restored when an additional three amino acids are present and is near wild-type levels when only one-third of the C-terminus is present. Measurement of ferroxidase activity is a more sensitive indicator of copper transport function and allowed identification of impaired variants not detected with the growth assay.


Subject(s)
Adenosine Triphosphatases/chemistry , Cation Transport Proteins/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Biological Transport , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Computer Simulation , Copper/metabolism , Copper Transport Proteins , Copper-Transporting ATPases , Culture Media/metabolism , Genetic Complementation Test , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Plasmids , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...