Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 3(2): 997-1007, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-35019301

ABSTRACT

Surface active phospholipids are present in fluids of biological relevance, and their adsorption may condition and determine the response of carbon and nanocarbon surfaces when they are immersed in physiological media. In this work, the adsorption and assembly of liposomes at carbon interfaces were investigated to understand the effect of surface termination on the extent and mode of assembly of lipid aggregates. Liposomes of natural lipids were prepared from a mixture of phosphatidylcholine (PC) and phosphatidylserine (PS), and their hydrodynamic size and surface zeta potential were studied as a function of pH. Adsorption was investigated at graphitic amorphous carbon surfaces (a-C) and at these surfaces after oxidative treatments (a-C:O). Infrared surface spectroscopy experiments show that PC/PS liposomes adsorb at a-C surfaces exclusively, independently of pH, while no adsorption is observed at a-C:O materials. Nanogravimetry and fluorescence imaging experiments in solution indicate that adsorption at a-C occurs as supported intact vesicles. Interestingly, PC/PS adsorption at oxidized surfaces was observed only in the presence of a dication such as Ca2+, a behavior that was attributed to screening of surface-liposome repulsive electrostatic interactions. Vesicle rupture experiments show that lipids adsorb as monolayers on graphitic surfaces, whereas adsorbate structures correspond to bilayers in the case of oxidized carbons. These results therefore demonstrate a strong dependence of adsorbate structure on both carbon chemistry and buffer composition. These findings have important implications for the design of carbon nanoparticles, carbon electrodes, or carbon coatings for applications in biology and medicine.

2.
Sci Rep ; 6: 24840, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27108562

ABSTRACT

Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30-90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.


Subject(s)
Diazonium Compounds/chemistry , Nanostructures/chemistry , Polysaccharides/chemistry , Prostheses and Implants/statistics & numerical data , Proteins/metabolism , Adsorption , Carbon/chemistry , Models, Chemical , Polysaccharides/metabolism , Proteins/chemistry , Surface Properties
3.
Langmuir ; 27(21): 13029-36, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21919493

ABSTRACT

Self-assembled organic layers are an important tool for modifying surfaces in a range of applications in materials science. Covalent modification of metal surfaces with aryldiazonium cations has attracted much attention primarily because this reaction offers a route for spontaneously grafting a variety of aromatic moieties from solution with high yield. We have investigated the kinetics of this process by performing real-time, in situ nanogravimetric measurements. The spontaneous grafting of 4-nitrobenzene diazonium salts onto gold electrodes was studied via quartz crystal microbalance (QCM) from aqueous solutions of the salt at varying concentrations. The concentration dependence of the grafting rate within the first 10 min is best modeled by assuming a reversible adsorption process with free energy comparable to that reported for arylthiols self-assembled on gold. Multilayer formation was observed after extended grafting times and was found to be favored by increasing bulk concentrations of the diazonium salt. Modified gold surfaces were characterized ex situ with cyclic voltammetry, infrared reflection absorbance spectroscopy, and X-ray photoemission spectroscopy. Based on the experimentally determined free energy of adsorption and on the observed grafting rates, we discuss a proposed mechanism for aryldiazonium chemisorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...