Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Biomech Biomed Engin ; 24(8): 831-843, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33337914

ABSTRACT

Advanced SSAs (e.g., the Mark III (MKIII)) were designed to increase mobility by eliminating the volume change associated with bending joints by using constant-volume rigid components with bearings connecting these components. Even with these changes, there are added torques required by the operator to drive the motion, which increases the energy expenditure with respect to unsuited motion. Part of the added effort stems from the mass and inertia of the suit, as well as frictional resistances to motion. This research considers the relationship between joint torques that an operator must generate and the resulting flexion/extension of the hip bearing assembly. A computational dynamics model of the MKIII inclusive of inertial and bearing friction properties was created and sensitivities of the model to input parameters (e.g., applied force, direction of gravity, bearing friction magnitude, knee angle) were investigated. The model was configured to match previously collected benchtop experimental suit data without a human that was externally forced. The model captured the hysteretic behaviour and estimated about 80% of the mean hip angle range as compared to the experimental data. Decreasing bearing resistance increased alignment with the experimental data. The torque due to inertia and friction each had periods where they dominated the total torque, supporting the importance of minimizing both mass and bearing friction. The present effort also highlighted how external forces and boundary conditions affected peak hip flexion/extension. Future efforts can use these types of dynamics models to examine motions driven internally by a person to achieve specific motions.


Subject(s)
Hip Joint/physiology , Hip/physiology , Knee Joint/physiology , Knee/physiology , Space Suits , Torque , Biomechanical Phenomena , Computer Simulation , Equipment Design , Friction , Humans , Materials Testing , Mechanical Phenomena , Motion , Range of Motion, Articular
2.
Aerosp Med Hum Perform ; 88(6): 589-596, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28539149

ABSTRACT

INTRODUCTION: The Mark III (MIII) space suit assembly (SSAs) implements a multibearing, hard-material hip brief assembly (HBA). We hypothesize that: 1) the MIII HBA restricts operator mobility and agility which manifests in effects to gait parameters; 2) the waist bearing provides rotational motion, partially alleviating the restrictions; and 3) there are resistive, speed-dependent torques associated with the spinning bearings which further diminish mobility and agility. METHODS: A subject (Suited and Unsuited) performed two planetary tasks-walking forward (WF) and backward (WB). An analysis of variance (ANOVA) and post hoc comparisons were performed to determine interaction effects. Motion capture data was processed to obtain gait parameters: static base (m), dynamic base (m), step length (m), stride length (m), cadence (steps/min), center of mass speed (m · s-1), foot clearance (toe and heel) (m), and bearing angular velocities (° · s-1). RESULTS: The static base when Suited (0.355 m) was larger than Unsuited (0.263 m). The Suited dynamic base (pooled, 0.200 m) was larger than both Unsuited WF (0.081 m) and WB (0.107 m). When Suited, the operator had lower clearance heights. The waist bearings provided about 7.2° of rotation when WB and WF. The maximum torque, while WF, in the right upper and mid bearings was 15.6 ± 1.35 Nm and 16.3 ± 1.28 Nm. DISCUSSION: This study integrated suit component properties and the emergent biomechanics of the operator to investigate how biomechanics are affected. The human hip has three collocated degrees of freedom (DOFs), whereas the HBA has a single DOF per bearing. The results can inform requirements for future SSA and other wearable system designs and evaluations.Cullinane CR, Rhodes RA, Stirling LA. Mobility and agility during locomotion in the Mark III space suit. Aerosp Med Hum Perform. 2017; 88(6):589-596.


Subject(s)
Gait , Locomotion , Space Suits , Adult , Biomechanical Phenomena , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...