Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
CRISPR J ; 6(2): 140-151, 2023 04.
Article in English | MEDLINE | ID: mdl-36912819

ABSTRACT

Advances in molecular medicine have placed nucleic acid detection methods at the center of an increasing number of clinical applications. Polymerase chain reaction (PCR)-based diagnostics have been widely adopted for their versatility, specificity, and sensitivity. However, recently reported clustered regularly interspaced short palindromic repeats-based methods have demonstrated equivalent to superior performance, with increased portability and reduced processing time and cost. In this study, we applied Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) technology to the detection of oncogenic rearrangements. We implemented SHERLOCK for the detection of BCR::ABL1 mRNA, a hallmark of chronic myeloid leukemia (CML), and EGFR DNA oncogenic alleles, frequently detected in glioblastoma and non-small cell lung cancer (NSCLC). SHERLOCK enabled rapid, sensitive, and variant-specific detection of BCR::ABL1 and EGFR alterations. Compared with the gold-standard PCR-based methods currently used in clinic, SHERLOCK achieved equivalent to greater sensitivity, suggesting it could be a new tool in CML and NSCLC, to detect low level of molecular residual disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Lung Neoplasms , Humans , Fusion Proteins, bcr-abl/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , CRISPR-Cas Systems , Gene Editing , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , ErbB Receptors/genetics
2.
Stem Cell Reports ; 15(3): 677-693, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32795423

ABSTRACT

CRISPR/Cas9 is a promising technology for gene correction. However, the edition is often biallelic, and uncontrolled small insertions and deletions (indels) concomitant to precise correction are created. Mutation-specific guide RNAs were recently tested to correct dominant inherited diseases, sparing the wild-type allele. We tested an original approach to correct compound heterozygous recessive mutations. We compared editing efficiency and genotoxicity by biallelic guide RNA versus mutant allele-specific guide RNA in iPSCs derived from a congenital erythropoietic porphyria patient carrying compound heterozygous mutations resulting in UROS gene invalidation. We obtained UROS function rescue and metabolic correction with both guides with the potential of use for porphyria clinical intervention. However, unlike the biallelic one, the mutant allele-specific guide was free of on-target collateral damage. We recommend this design to avoid genotoxicity and to obtain on-target scarless gene correction for recessive disease with frequent cases of compound heterozygous mutations.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Editing , Mutation/genetics , Porphyrias/genetics , Porphyrias/therapy , RNA, Guide, Kinetoplastida/metabolism , Stem Cells/metabolism , Alleles , Base Sequence , Clone Cells , Exons/genetics , Genetic Therapy , Heterozygote , Humans , Induced Pluripotent Stem Cells/metabolism , Karyotyping , Uroporphyrinogen III Synthetase/genetics
3.
Nat Commun ; 10(1): 1136, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850590

ABSTRACT

CRISPR-Cas9 is a promising technology for genome editing. Here we use Cas9 nuclease-induced double-strand break DNA (DSB) at the UROS locus to model and correct congenital erythropoietic porphyria. We demonstrate that homology-directed repair is rare compared with NHEJ pathway leading to on-target indels and causing unwanted dysfunctional protein. Moreover, we describe unexpected chromosomal truncations resulting from only one Cas9 nuclease-induced DSB in cell lines and primary cells by a p53-dependent mechanism. Altogether, these side effects may limit the promising perspectives of the CRISPR-Cas9 nuclease system for disease modeling and gene therapy. We show that the single nickase approach could be safer since it prevents on- and off-target indels and chromosomal truncations. These results demonstrate that the single nickase and not the nuclease approach is preferable, not only for modeling disease but also and more importantly for the safe management of future CRISPR-Cas9-mediated gene therapies.


Subject(s)
CRISPR-Cas Systems , Chromosomes, Human, Pair 10 , DNA Breaks, Double-Stranded , Deoxyribonuclease I/genetics , Gene Editing/methods , Genetic Therapy/methods , Uroporphyrinogen III Synthetase/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Chromosome Deletion , Clustered Regularly Interspaced Short Palindromic Repeats , DNA/genetics , DNA/metabolism , Deoxyribonuclease I/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Genome, Human , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , K562 Cells , Models, Biological , Porphyria, Erythropoietic/genetics , Porphyria, Erythropoietic/metabolism , Porphyria, Erythropoietic/pathology , Porphyria, Erythropoietic/therapy , Primary Cell Culture , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Recombinational DNA Repair , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Uroporphyrinogen III Synthetase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...