Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiologyopen ; 12(4): e1375, 2023 08.
Article in English | MEDLINE | ID: mdl-37642484

ABSTRACT

Antibiotic resistance is a major global health threat. Agricultural use of antibiotics is considered to be a main contributor to the issue, influencing both animals and humans as defined by the One Health approach. The purpose of the present study was to determine the abundance of antibiotic-resistant bacterial populations and the overall bacterial diversity of cattle farm soils that have been treated with animal manure compost. Soil and manure samples were collected from different sites at Tullimba farm, NSW. Cultures were grown from these samples in the presence of 11 commonly used antibiotics and antibiotic-resistant bacteria (ARB) colonies were identified. Soil and manure bacterial diversity was also determined using 16S ribosomal RNA next-generation sequencing. Results showed that ARB abundance was greatest in fresh manure and significantly lower in composted manure. However, the application of composted manure on paddock soil led to a significant increase in soil ARB abundance. Of the antibiotics tested, the number of ARB in each sample was greatest for antibiotics that inhibited the bacterial cell wall and protein synthesis. Collectively, these results suggest that the transfer of antibiotic resistance from composted animal manure to soil may not be solely mediated through the application of live bacteria and highlight the need for further research into the mechanism of antibiotic resistance transfer.


Subject(s)
Composting , Soil , Humans , Cattle , Animals , Livestock , Angiotensin Receptor Antagonists , Manure , Angiotensin-Converting Enzyme Inhibitors , Agriculture , Drug Resistance, Microbial , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...