Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
3.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35145033

ABSTRACT

Intensive crop production on grassland-derived Mollisols has liberated massive amounts of carbon (C) to the atmosphere. Whether minimizing soil disturbance, diversifying crop rotations, or re-establishing perennial grasslands and integrating livestock can slow or reverse this trend remains highly uncertain. We investigated how these management practices affected soil organic carbon (SOC) accrual and distribution between particulate (POM) and mineral-associated (MAOM) organic matter in a 29-y-old field experiment in the North Central United States and assessed how soil microbial traits were related to these changes. Compared to conventional continuous maize monocropping with annual tillage, systems with reduced tillage, diversified crop rotations with cover crops and legumes, or manure addition did not increase total SOC storage or MAOM-C, whereas perennial pastures managed with rotational grazing accumulated more SOC and MAOM-C (18 to 29% higher) than all annual cropping systems after 29 y of management. These results align with a meta-analysis of data from published studies comparing the efficacy of soil health management practices in annual cropping systems on Mollisols worldwide. Incorporating legumes and manure into annual cropping systems enhanced POM-C, microbial biomass, and microbial C-use efficiency but did not significantly increase microbial necromass accumulation, MAOM-C, or total SOC storage. Diverse, rotationally grazed pasture management has the potential to increase persistent soil C on Mollisols, highlighting the key role of well-managed grasslands in climate-smart agriculture.


Subject(s)
Agriculture/methods , Animal Feed , Carbon/chemistry , Crops, Agricultural/physiology , Grassland , Soil/chemistry , Animals , Cattle , Dairying
4.
Plants (Basel) ; 9(3)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164229

ABSTRACT

Flooding can reduce corn growth and yield, but nitrogen (N) management practices may alter the degree to which plants are negatively impacted. Damage caused by flooded conditions may also affect the utilization of a post-flood N application to increase yield. The objectives of this study were to evaluate how pre-plant and pre-plant plus post-flood N applications contribute to corn growth and yield following flood conditions and to quantify the partial return of employing different N management strategies in the event of a flood. A field study was conducted in Ohio using four flood durations (FD; 0, 2, 4, or 6 days initiated at V4 to V5) and three N management practices (0 kg N ha-1, 134 kg N ha-1 applied pre-plant, and 134 pre-plant + 67 kg N ha-1 applied post-flooding). Application of 134 kg N ha-1 increased yield compared to 0 kg N ha-1 by 65%, 68%, 43% and 16% for 0 d, 2 d, 4 d, and 6 d FD, respectively; the application of 134 + 67 kg N ha-1 increased grain yield compared to 134 kg N ha-1 by 7%, 27%, 70%, or 55% for 0 d, 2 d, 4 d, or 6 d FD, respectively. Partial return analysis produced similar results to those for grain yield. Results suggest that in regions prone to early-season flooding, additional N applied post-flood can improve yield and partial return compared to the application of pre-plant alone at a lower rate or no N. Results indicate that total soil nitrate-N levels two weeks after flood initiation may serve as a good predictor of yield.

5.
Bioscience ; 68(4): 294-304, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29662249

ABSTRACT

Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption.

6.
J Environ Qual ; 46(2): 420-430, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28380559

ABSTRACT

Soil management in urban areas faces dual challenges of reducing public exposure to soil contaminants, such as lead (Pb) and polycyclic aromatic hydrocarbons, and maintaining soil function. This study evaluated three management options for an urban lot in Cleveland, OH, containing 185 to 5197 mg Pb kg and 0.28 to 5.50 mg benzo(a)pyrene kg. Treatment options included: (i) cap the site with a soil blend containing compost and beneficially reused dredged sediments, (ii) mix compost with the soil, and (iii) mix compost and sediments with the soil. The soil blend cap reduced surface soil Pb to 12.4 mg Pb kg and benzo(a)pyrene content to 0.99 ± 0.41 mg kg. Aggregate stability for 2- to 0.25-mm aggregates in the soil blend cap was 13% compared with the 38% aggregate stability in the urban soil. Mixing compost with the soil reduced benzo(a)pyrene content, but sample variability indicated that elevated spots likely remained exposed at the surface. Compost addition diluted soil Pb and increased aggregate stability to 60%. Mixing compost and sediments with the soil was the only management option accomplishing both management goals of reducing surface soil contaminants and maintaining soil health. For this combined mixing option, aggregate stability was 37%, soil Pb was 15 mg kg, and benzo(a)pyrene was 0.99 ± 0.09 mg kg. Food-grade oil addition did not increase benzo(a)pyrene degradation. Future studies should evaluate how incorporating soil blends in different soil types with a range of contaminants may offer a suitable long-term management option for urban soil contaminants.


Subject(s)
Lead/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/chemistry , Cities , Environmental Exposure , Environmental Pollution , Humans , Lead/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Soil Pollutants/analysis
7.
BMC Bioinformatics ; 10: 171, 2009 Jun 06.
Article in English | MEDLINE | ID: mdl-19500385

ABSTRACT

BACKGROUND: Despite increasing popularity and improvements in terminal restriction fragment length polymorphism (T-RFLP) and other microbial community fingerprinting techniques, there are still numerous obstacles that hamper the analysis of these datasets. Many steps are required to process raw data into a format ready for analysis and interpretation. These steps can be time-intensive, error-prone, and can introduce unwanted variability into the analysis. Accordingly, we developed T-REX, free, online software for the processing and analysis of T-RFLP data. RESULTS: Analysis of T-RFLP data generated from a multiple-factorial study was performed with T-REX. With this software, we were able to i) label raw data with attributes related to the experimental design of the samples, ii) determine a baseline threshold for identification of true peaks over noise, iii) align terminal restriction fragments (T-RFs) in all samples (i.e., bin T-RFs), iv) construct a two-way data matrix from labeled data and process the matrix in a variety of ways, v) produce several measures of data matrix complexity, including the distribution of variance between main and interaction effects and sample heterogeneity, and vi) analyze a data matrix with the additive main effects and multiplicative interaction (AMMI) model. CONCLUSION: T-REX provides a free, platform-independent tool to the research community that allows for an integrated, rapid, and more robust analysis of T-RFLP data.


Subject(s)
DNA Fingerprinting/methods , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA/methods , Software , Analysis of Variance , Database Management Systems , Databases, Genetic , Genes, Bacterial , Internet , Models, Statistical , Sequence Alignment , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...