Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612039

ABSTRACT

One of the most fascinating aspects of condensed matter is its ability to conduct electricity, which is particularly pronounced in conventional metals such as copper or silver. Such behavior stems from a strong tendency of valence electrons to delocalize in a periodic potential created by ions in the crystal lattice of a given material. In many advanced materials, however, this basic delocalization process of the valence electrons competes with various processes that tend to localize these very same valence electrons, thus driving the insulating behavior. The two such most important processes are the Mott localization, driven by strong correlation effects among the valence electrons, and the Anderson localization, driven by the interaction of the valence electrons with a strong disorder potential. These two localization processes are almost exclusively considered separately from both an experimental and a theoretical standpoint. Here, we offer an overview of our long-standing research on selected organic conductors and manganites, that clearly show the presence of both these localization processes. We discuss these results within existing theories of Mott-Anderson localization and argue that such behavior could be a common feature of many advanced materials.

2.
Phys Rev Lett ; 132(9): 096701, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38489626

ABSTRACT

The search for new materials for energy-efficient electronic devices has gained unprecedented importance. Among the various classes of magnetic materials driving this search are antiferromagnets, magnetoelectrics, and systems with topological spin excitations. Cu_{3}TeO_{6} is a material that belongs to all three of these classes. Combining static electric polarization and magnetic torque measurements with phenomenological simulations we demonstrate that magnetic-field-induced spin reorientation needs to be taken into account to understand the linear magnetoelectric effect in Cu_{3}TeO_{6}. Our calculations reveal that the magnetic field pushes the system from the nonpolar ground state to the polar magnetic structures. However, nonpolar structures only weakly differing from the obtained polar ones exist due to the weak effect that the field-induced breaking of some symmetries has on the calculated structures. Among those symmetries is the PT (1[over ¯]^{'}) symmetry, preserved for Dirac points found in Cu_{3}TeO_{6}. Our findings establish Cu_{3}TeO_{6} as a promising playground to study the interplay of spintronics-related phenomena.

3.
Proc Natl Acad Sci U S A ; 118(7)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33579820

ABSTRACT

The interplay between charge order and d-wave superconductivity in high-[Formula: see text] cuprates remains an open question. While mounting evidence from spectroscopic probes indicates that charge order competes with superconductivity, to date little is known about the impact of charge order on charge transport in the mixed state, when vortices are present. Here we study the low-temperature electrical resistivity of three distinctly different cuprate families under intense magnetic fields, over a broad range of hole doping and current excitations. We find that the electronic transport in the doping regime where long-range charge order is known to be present is characterized by a nonohmic resistivity, the identifying feature of an anomalous vortex liquid. The field and temperature range in which this nonohmic behavior occurs indicates that the presence of long-range charge order is closely related to the emergence of this anomalous vortex liquid, near a vortex solid boundary that is defined by the excitation current in the [Formula: see text] 0 limit. Our findings further suggest that this anomalous vortex liquid, a manifestation of fragile superconductivity with a suppressed critical current density, is ubiquitous in the high-field state of charge-ordered cuprates.

4.
Materials (Basel) ; 13(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212831

ABSTRACT

Transparent conducting oxides (TCO) with high electrical conductivity and at the same time high transparency in the visible spectrum are an important class of materials widely used in many devices requiring a transparent contact such as light-emitting diodes, solar cells and display screens. Since the improvement of electrical conductivity usually leads to degradation of optical transparency, a fine-tuning sample preparation process and a better understanding of the correlation between structural and transport properties is necessary for optimizing the properties of TCO for use in such devices. Here we report a structural and magnetotransport study of tin oxide (SnO2), a well-known and commonly used TCO, prepared by a simple and relatively cheap Atmospheric Pressure Chemical Vapour Deposition (APCVD) method in the form of thin films deposited on soda-lime glass substrates. The thin films were deposited at two different temperatures (which were previously found to be close to optimum for our setup), 590 °C and 610 °C, and with (doped) or without (undoped) the addition of fluorine dopants. Scanning Electron Microscopy (SEM) and Grazing Incidence X-ray Diffraction (GIXRD) revealed the presence of inhomogeneity in the samples, on a bigger scale in form of grains (80-200 nm), and on a smaller scale in form of crystallites (10-25 nm). Charge carrier density and mobility extracted from DC resistivity and Hall effect measurements were in the ranges 1-3 × 1020 cm-3 and 10-20 cm2/Vs, which are typical values for SnO2 films, and show a negligible temperature dependence from room temperature down to -269 °C. Such behaviour is ascribed to grain boundary scattering, with the interior of the grains degenerately doped (i.e., the Fermi level is situated well above the conduction band minimum) and with negligible electrostatic barriers at the grain boundaries (due to high dopant concentration). The observed difference for factor 2 in mobility among the thin-film SnO2 samples most likely arises due to the difference in the preferred orientation of crystallites (texture coefficient).

SELECTION OF CITATIONS
SEARCH DETAIL
...