Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 24(23): e202300480, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37715738

ABSTRACT

Selective covalent labelling of enzymes using small molecule probes has advanced the scopes of protein profiling. The covalent bond formation to a specific target is the key step of activity-based protein profiling (ABPP), a method which has become an indispensable tool for measuring enzyme activity in complex matrices. With respect to carbohydrate processing enzymes, strategies for ABPP so far involve labelling the active site of the enzyme, which results in permanent loss of activity. Here, we report in a proof of concept study the use of ligand-directed chemistry (LDC) for labelling glycoside hydrolases near - but not in - the active site. During the labelling process, the competitive inhibitor is cleaved from the probe, departs the active site and the enzyme maintains its catalytic activity. To this end, we designed a building block synthetic concept for small molecule probes containing iminosugar-based reversible inhibitors for labelling of two model ß-glucosidases. The results indicate that the LDC approach can be adaptable for covalent proximity labelling of glycoside hydrolases.


Subject(s)
Carbohydrates , Glycoside Hydrolases , Glycoside Hydrolases/metabolism , Proof of Concept Study , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...