Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 5(5): 777-788, 2023 05.
Article in English | MEDLINE | ID: mdl-37165176

ABSTRACT

Most processing of the human diet occurs in the small intestine. Metabolites in the small intestine originate from host secretions, plus the ingested exposome1 and microbial transformations. Here we probe the spatiotemporal variation of upper intestinal luminal contents during routine daily digestion in 15 healthy male and female participants. For this, we use a non-invasive, ingestible sampling device to collect and analyse 274 intestinal samples and 60 corresponding stool homogenates by combining five mass spectrometry assays2,3 and 16S rRNA sequencing. We identify 1,909 metabolites, including sulfonolipids and fatty acid esters of hydroxy fatty acids (FAHFA) lipids. We observe that stool and intestinal metabolomes differ dramatically. Food metabolites display trends in dietary biomarkers, unexpected increases in dicarboxylic acids along the intestinal tract and a positive association between luminal keto acids and fruit intake. Diet-derived and microbially linked metabolites account for the largest inter-individual differences. Notably, two individuals who had taken antibiotics within 6 months before sampling show large variation in levels of bioactive FAHFAs and sulfonolipids and other microbially related metabolites. From inter-individual variation, we identify Blautia species as a candidate to be involved in FAHFA metabolism. In conclusion, non-invasive, in vivo sampling of the human small intestine and ascending colon under physiological conditions reveals links between diet, host and microbial metabolism.


Subject(s)
Fatty Acids , Metabolome , Humans , Male , Female , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/metabolism , Fatty Acids/metabolism , Intestine, Small/metabolism , Feces/chemistry
2.
Nature ; 617(7961): 581-591, 2023 May.
Article in English | MEDLINE | ID: mdl-37165188

ABSTRACT

The spatiotemporal structure of the human microbiome1,2, proteome3 and metabolome4,5 reflects and determines regional intestinal physiology and may have implications for disease6. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals7. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Intestines , Metabolome , Proteome , Humans , Bile Acids and Salts/metabolism , Gastrointestinal Microbiome/physiology , Proteome/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteriophages/isolation & purification , Bacteriophages/physiology , Feces/chemistry , Feces/microbiology , Feces/virology , Intestines/chemistry , Intestines/metabolism , Intestines/microbiology , Intestines/physiology , Intestines/virology , Digestion/physiology
3.
PLoS Biol ; 20(9): e3001727, 2022 09.
Article in English | MEDLINE | ID: mdl-36067229

ABSTRACT

Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.


Subject(s)
Gene Transfer Techniques , Genes, Bacterial , Microfluidics , Bifidobacterium longum/genetics , Electroporation/methods , Escherichia coli/genetics , Gene Transfer Techniques/instrumentation , Microfluidics/methods , Transformation, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...