Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
mSphere ; 8(5): e0024923, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37750686

ABSTRACT

Persistent infection by Staphylococcus aureus has been linked to the bacterial stringent response (SR), a conserved stress response pathway regulated by the Rel protein. Rel synthesizes (p)ppGpp "alarmones" in response to amino acid starvation, which enables adaptation to stress by modulating bacterial growth and virulence. We previously identified five novel protein-altering mutations in rel that arose in patients with persistent methicillin-resistant S. aureus bacteremia. The mutations mapped to both the enzymatic and regulatory protein domains of Rel. Here, we set out to characterize the phenotype of these mutations to understand how they may have been selected in vivo. After introducing each mutation into S. aureus strain JE2, we analyzed growth, fitness, and antibiotic profiles. Despite being located in different protein domains, we found that all of the mutations converged on the same phenotype. Each shortened the time of lag phase growth and imparted a fitness advantage in nutritionally depleted conditions. Through quantification of intracellular (p)ppGpp, we link this phenotype to increased SR activation, specifically during the stationary phase of growth. In contrast to two previously identified clinical rel mutations, we find that our rel mutations do not cause antibiotic tolerance. Instead, our findings suggest that in vivo selection was due to an augmented SR that primes cells for growth in nutrient-poor conditions, which may be a strategy for evading host-imposed nutritional immunity. Importance Host and pathogen compete for available nutrition during infection. For bacteria, the stringent response (SR) regulator Rel responds to amino acid deprivation by signaling the cell to modulate its growth rate, metabolism, and virulence. In this report, we characterize five rel mutations that arose during cases of persistent methicillin-resistant Staphylococcus aureus bacteremia. We find that all of the mutations augmented SR signaling specifically under nutrient-poor conditions, enabling the cell to more readily grow and survive. Our findings reveal a strategy used by bacterial pathogens to evade the nutritional immunity imposed by host tissues during infection.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Guanosine Pentaphosphate/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Mutation , Staphylococcal Infections/microbiology , Nutrients , Amino Acids/genetics
2.
Structure ; 30(11): 1467-1469, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36332609

ABSTRACT

In this issue of Structure, Maso et al. (2022) discover nanobodies that inhibit the SOS response of Escherichia coli by targeting the LexA repressor-protease. High-resolution structures of the novel LexA-nanobody complexes reveal they function by stabilizing LexA in its inactive conformation and preventing co-proteolysis by RecA∗.


Subject(s)
Camelids, New World , SOS Response, Genetics , Animals , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Camelids, New World/metabolism , Wool/metabolism , Bacterial Proteins/genetics , Serine Endopeptidases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Bacteria/metabolism
3.
Infect Immun ; 90(4): e0000122, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35285704

ABSTRACT

Severe infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are often complicated by persistent bacteremia (PB) despite active antibiotic therapy. Antibiotic resistance rarely contributes to MRSA-PB, suggesting an important role for antibiotic tolerance pathways. To identify bacterial factors associated with PB, we sequenced the whole genomes of 206 MRSA isolates derived from 20 patients with PB and looked for genetic signatures of adaptive within-host evolution. We found that genes involved in the tricarboxylic acid cycle (citZ and odhA) and stringent response (rel) bore repeated, independent, protein-altering mutations across multiple infections, indicative of convergent evolution. Both pathways have been linked previously to antibiotic tolerance. Mutations in citZ were identified most frequently, and further study showed they caused antibiotic tolerance through the loss of citrate synthase activity. Isolates harboring mutant alleles (citZ, odhA, and rel) were sampled at a low frequency from each patient but were detected in 10 (50%) of the patients. These results suggest that subpopulations of antibiotic-tolerant mutants emerge commonly during MRSA-PB. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital-acquired infection. In severe cases, bacteria invade the bloodstream and cause bacteremia, a condition associated with high mortality. We analyzed the genomes of serial MRSA isolates derived from patients with bacteremia that persisted through active antibiotic therapy and found a frequent evolution of pathways leading to antibiotic tolerance. Antibiotic tolerance is distinct from antibiotic resistance, and the role of tolerance in clinical failure of antibiotic therapy is defined poorly. Our results show genetic evidence that perturbation of specific metabolic pathways plays an important role in the ability of MRSA to evade antibiotics during severe infection.


Subject(s)
Bacteremia , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/microbiology , Cross Infection/microbiology , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology
4.
G3 (Bethesda) ; 12(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-34849799

ABSTRACT

The bacterial DNA damage response pathway (SOS response) is composed of a network of genes regulated by a single transcriptional repressor, LexA. The lexA promoter, itself, contains two LexA operators, enabling negative feedback. In Escherichia coli, the downstream operator contains a conserved DNA cytosine methyltransferase (Dcm) site that is predicted to be methylated to 5-methylcytosine (5mC) specifically during stationary phase growth, suggesting a regulatory role for DNA methylation in the SOS response. To test this, we quantified 5mC at the lexA locus, and then examined the effect of LexA on Dcm activity, as well as the impact of this 5mC mark on LexA binding, lexA transcription, and SOS response induction. We found that 5mC at the lexA promoter is specific to stationary phase growth, but that it does not affect lexA expression. Our data support a model where LexA binding at the promoter inhibits Dcm activity without an effect on the SOS regulon.


Subject(s)
Escherichia coli , SOS Response, Genetics , Bacterial Proteins/genetics , Cytosine , DNA/metabolism , DNA Methylation , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Serine Endopeptidases/genetics
5.
PLoS Pathog ; 17(9): e1009872, 2021 09.
Article in English | MEDLINE | ID: mdl-34499699

ABSTRACT

Microbes are constantly evolving. Laboratory studies of bacterial evolution increase our understanding of evolutionary dynamics, identify adaptive changes, and answer important questions that impact human health. During bacterial infections in humans, however, the evolutionary parameters acting on infecting populations are likely to be much more complex than those that can be tested in the laboratory. Nonetheless, human infections can be thought of as naturally occurring in vivo bacterial evolution experiments, which can teach us about antibiotic resistance, pathogenesis, and transmission. Here, we review recent advances in the study of within-host bacterial evolution during human infection and discuss practical considerations for conducting such studies. We focus on 2 possible outcomes for de novo adaptive mutations, which we have termed "adapt-and-live" and "adapt-and-die." In the adapt-and-live scenario, a mutation is long lived, enabling its transmission on to other individuals, or the establishment of chronic infection. In the adapt-and-die scenario, a mutation is rapidly extinguished, either because it carries a substantial fitness cost, it arises within tissues that block transmission to new hosts, it is outcompeted by more fit clones, or the infection resolves. Adapt-and-die mutations can provide rich information about selection pressures in vivo, yet they can easily elude detection because they are short lived, may be more difficult to sample, or could be maladaptive in the long term. Understanding how bacteria adapt under each of these scenarios can reveal new insights about the basic biology of pathogenic microbes and could aid in the design of new translational approaches to combat bacterial infections.


Subject(s)
Adaptation, Physiological , Bacterial Infections , Genetic Fitness , Humans
6.
DNA Repair (Amst) ; 103: 103130, 2021 07.
Article in English | MEDLINE | ID: mdl-33991871

ABSTRACT

The bacterial SOS response to DNA damage induces an error-prone repair program that is mutagenic. In Escherichia coli, SOS-induced mutations are caused by the translesion synthesis (TLS) activity of two error-prone polymerases (EPPs), Pol IV and Pol V. The mutational footprint of the EPPs is confounded by both DNA damage and repair, as mutations are targeted to DNA lesions via TLS and corrected by the mismatch repair (MMR) system. To remove these factors and assess untargeted EPP mutations genome-wide, we constructed spontaneous SOS mutator strains deficient in MMR, then analyzed their mutational footprints by mutation accumulation and whole genome sequencing. Our analysis reveals new features of untargeted SOS-mutagenesis, showing how MMR alters its spectrum, sequence specificity, and strand-bias. Our data support a model where the EPPs prefer to act on the lagging strand of the replication fork, producing base pair mismatches that are differentially repaired by MMR depending on the type of mismatch.


Subject(s)
DNA Mismatch Repair , Escherichia coli/genetics , Mutagenesis , SOS Response, Genetics , Genome, Bacterial
7.
mSphere ; 5(4)2020 08 19.
Article in English | MEDLINE | ID: mdl-32817380

ABSTRACT

Feedback mechanisms are fundamental to the control of physiological responses. One important example in gene regulation, termed negative autoregulation (NAR), occurs when a transcription factor (TF) inhibits its own production through transcriptional repression. This enables more-rapid homeostatic control of gene expression. NAR circuits presumably evolve to limit the fitness costs of gratuitous gene expression. The key biochemical reactions of NAR can be parameterized using a mathematical model of promoter activity; however, this model of NAR has been studied mostly in the context of synthetic NAR circuits that are disconnected from the target genes of the TFs. Thus, it remains unclear how constrained NAR parameters are in a native circuit context, where the TF target genes can have fitness effects on the cell. To quantify these constraints, we created a panel of Escherichia coli strains with different lexA-NAR circuit parameters and analyzed the effect on SOS response function and bacterial fitness. Using a mathematical model for NAR, these experimental data were used to calculate NAR parameter values and derive a parameter-fitness landscape. Without feedback, survival of DNA damage was decreased due to high LexA concentrations and slower SOS "turn-on" kinetics. However, we show that, even in the absence of DNA damage, the lexA promoter is strong enough that, without feedback, high levels of lexA expression result in a fitness cost to the cell. Conversely, hyperfeedback can mimic lexA deletion, which is also costly. This work elucidates the lexA-NAR parameter values capable of balancing the cell's requirement for rapid SOS response activation with limiting its toxicity.IMPORTANCE Feedback mechanisms are critical to control physiological responses. In gene regulation, one important example, termed negative autoregulation (NAR), occurs when a transcription factor (TF) inhibits its own production. NAR is common across the tree of life, enabling rapid homeostatic control of gene expression. NAR behavior can be described in accordance with its core biochemical parameters, but how constrained these parameters are by evolution is unclear. Here, we describe a model genetic network controlled by an NAR circuit within the bacterium Escherichia coli and elucidate these constraints by experimentally changing a key parameter and measuring its effect on circuit response and fitness. This analysis yielded a parameter-fitness landscape representing the genetic network, providing a window into what gene-environment conditions favor evolution of this regulatory strategy.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Genetic Fitness , Homeostasis , Serine Endopeptidases/genetics , DNA Damage , Models, Theoretical , Promoter Regions, Genetic , Transcription, Genetic
8.
Curr Genet ; 65(2): 401-406, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30353359

ABSTRACT

Efficient regulation of a complex genetic response requires that the gene products, which catalyze the response, be synthesized in a temporally ordered manner to match the sequential nature of the reaction pathway they act upon. Transcription regulation networks coordinate this aspect of cellular control by modulating transcription factor (TF) concentrations through time. The effect a TF has on the timing of gene expression is often modeled assuming that the TF-promoter binding reaction is in thermodynamic equilibrium with changes in TF concentration over time; however, non-equilibrium dynamics resulting from relatively slow TF-binding kinetics can result in different network behavior. Here, I highlight a recent study of the bacterial SOS response, where a single TF regulates multiple target promoters, to show how a disequilibrium of TF binding at promoters results in a more complex behavior, enabling a larger temporal separation of promoter activities that depends not only upon slow TF binding kinetics at promoters, but also on the magnitude of the response stimulus. I also discuss the dependence of network behavior on specific TF regulatory mechanisms and the implications non-equilibrium dynamics have for stochastic gene expression.


Subject(s)
Gene Expression Regulation , Transcription Factors/metabolism , DNA Damage , Kinetics , Models, Biological , Promoter Regions, Genetic , Protein Binding , SOS Response, Genetics
9.
Infect Dis Clin Pract (Baltim Md) ; 26(4): 237-239, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30140147

ABSTRACT

We report a case of spinal epidural abscess (SEA) in a 58-year-old woman who had recently been diagnosed with gonococcal infection, but did not receive guideline-recommended therapy. She presented with back pain and signs and symptoms of pelvic inflammatory disease (PID). MRI of the spine demonstrated epidural abscess extending from L4-L5 to T10. She underwent T10-L1 and L3-L4 laminectomies for evacuation of the abscess and Gardnerella vaginalis and Prevotella amnii were isolated from the abscess fluid cultures. Our case demonstrates SEA as a rare, but morbid complication of PID and highlights the pathogenic potential of the anaerobic flora associated with PID.

10.
PLoS Genet ; 14(6): e1007405, 2018 06.
Article in English | MEDLINE | ID: mdl-29856734

ABSTRACT

Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.


Subject(s)
Bacterial Proteins/metabolism , DNA Damage/genetics , Escherichia coli/genetics , Repressor Proteins/metabolism , SOS Response, Genetics/genetics , Serine Endopeptidases/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Regulatory Networks/genetics , Genes, Bacterial , Kinetics , Models, Genetic , Promoter Regions, Genetic , Repressor Proteins/genetics , Serine Endopeptidases/genetics , Time Factors
11.
Front Microbiol ; 9: 2961, 2018.
Article in English | MEDLINE | ID: mdl-30619111

ABSTRACT

Many antibiotics, either directly or indirectly, cause DNA damage thereby activating the bacterial DNA damage (SOS) response. SOS activation results in expression of genes involved in DNA repair and mutagenesis, and the regulation of the SOS response relies on two key proteins, LexA and RecA. Genetic studies have indicated that inactivating the regulatory proteins of this response sensitizes bacteria to antibiotics and slows the appearance of resistance. However, advancement of small molecule inhibitors of the SOS response has lagged, despite their clear promise in addressing the threat of antibiotic resistance. Previously, we had addressed this deficit by performing a high throughput screen of ∼1.8 million compounds that monitored for inhibition of RecA-mediated auto-proteolysis of Escherichia coli LexA, the reaction that initiates the SOS response. In this report, the refinement of the 5-amino-1-(carbamoylmethyl)-1H-1,2,3-triazole-4-carboxamide scaffold identified in the screen is detailed. After development of a modular synthesis, a survey of key activity determinants led to the identification of an analog with improved potency and increased breadth, targeting auto-proteolysis of LexA from both E. coli and Pseudomonas aeruginosa. Comparison of the structure of this compound to those of others in the series suggests structural features that may be required for activity and cross-species breadth. In addition, the feasibility of small molecule modulation of the SOS response was demonstrated in vivo by the suppression of the appearance of resistance. These structure activity relationships thus represent an important step toward producing Drugs that Inhibit SOS Activation to Repress Mechanisms Enabling Resistance (DISARMERs).

12.
ACS Infect Dis ; 4(3): 349-359, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29275629

ABSTRACT

The RecA/LexA axis of the bacterial DNA damage (SOS) response is a promising, yet nontraditional, drug target. The SOS response is initiated upon genotoxic stress, when RecA, a DNA damage sensor, induces LexA, the SOS repressor, to undergo autoproteolysis, thereby derepressing downstream genes that can mediate DNA repair and accelerate mutagenesis. As genetic inhibition of the SOS response sensitizes bacteria to DNA damaging antibiotics and decreases acquired resistance, inhibitors of the RecA/LexA axis could potentiate our current antibiotic arsenal. Compounds targeting RecA, which has many mammalian homologues, have been reported; however, small-molecules targeting LexA autoproteolysis, a reaction unique to the prokaryotic SOS response, have remained elusive. Here, we describe the logistics and accomplishments of an academic-industry partnership formed to pursue inhibitors against the RecA/LexA axis. A novel fluorescence polarization assay reporting on RecA-induced self-cleavage of LexA enabled the screening of 1.8 million compounds. Follow-up studies on select leads show distinct activity patterns in orthogonal assays, including several with activity in cell-based assays reporting on SOS activation. Mechanistic assays demonstrate that we have identified first-in-class small molecules that specifically target the LexA autoproteolysis step in SOS activation. Our efforts establish a realistic example for navigating academic-industry partnerships in pursuit of anti-infective drugs and offer starting points for dedicated lead optimization of SOS inhibitors that could act as adjuvants for current antibiotics.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/metabolism , Intersectoral Collaboration , Proteolysis , SOS Response, Genetics/drug effects , Serine Endopeptidases/metabolism , Biomedical Research/organization & administration , Drug Discovery/organization & administration , High-Throughput Screening Assays , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology
13.
ACS Synth Biol ; 6(11): 2067-2076, 2017 11 17.
Article in English | MEDLINE | ID: mdl-28826208

ABSTRACT

The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.


Subject(s)
Bacterial Proteins , DNA Damage , Escherichia coli , Gene Regulatory Networks , Rec A Recombinases , SOS Response, Genetics , Serine Endopeptidases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
14.
mSphere ; 1(4)2016.
Article in English | MEDLINE | ID: mdl-27536734

ABSTRACT

The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment.

15.
Biochemistry ; 54(23): 3573-82, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26016604

ABSTRACT

Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. Here, we review recent advances in our understanding of the processes that contribute to the evolution of antibiotic resistance, with a particular focus on hypermutation mediated by the SOS pathway and horizontal gene transfer. We explore the molecular mechanisms involved in acquired resistance and discuss their viability as potential targets. We propose that additional studies into these adaptive mechanisms not only can provide insights into evolution but also can offer a strategy for potentiating our current antibiotic arsenal.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Evolution, Molecular , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Models, Genetic , SOS Response, Genetics/drug effects , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/drug effects , Gene Transfer, Horizontal/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/metabolism , Humans , Mutagenesis/drug effects
16.
J Mol Biol ; 399(1): 182-95, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20380839

ABSTRACT

Poxvirus DNA replication generates linear concatemers containing many copies of the viral genome with inverted repeat sequences at the junctions between monomers. The inverted repeats refold to generate Holliday junctions, which are cleaved by the virus-encoded resolvase enzyme to form unit-length genomes. Here we report studies of the influence of metal cofactors on the activity and structure of the resolvase of fowlpox virus, which provides a tractable model for in vitro studies. Small-molecule inhibitors of related enzymes bind simultaneously to metal cofactors and nearby surface amino acid residues, so understanding enzyme-cofactor interactions is important for the design of antiviral agents. Analysis of inferred active-site residues (D7, E60, K102, D132, and D135) by mutagenesis and metal rescue experiments specified residues that contribute to binding metal ions and that multiple binding sites are probably involved. Differential electrophoretic analysis was used to map the conformation of the DNA junction when bound by resolvase. For the wild-type complex in the presence of EDTA (ethylenediaminetetraacetic acid) or Ca(2+), migration was consistent with the DNA arms arranged in near-tetrahedral geometry. However, the D7N active-site mutant resolvase held the arms in a more planar arrangement in EDTA, Ca(2+), or Mg(2+) conditions, implicating metal-dependent contacts at the active site in the larger architecture of the complex. These data show how divalent metals dictate the conformation of FPV resolvase-DNA complexes and subsequent DNA cleavage.


Subject(s)
Fowlpox/enzymology , Metals/chemistry , Recombinases/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cations, Divalent , DNA/chemistry , DNA/metabolism , DNA, Cruciform/chemistry , DNA, Cruciform/metabolism , Fowlpox/metabolism , Molecular Sequence Data , Recombinases/metabolism , Substrate Specificity , Viral Proteins/metabolism
17.
J Biol Chem ; 284(2): 1190-201, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19004818

ABSTRACT

The first steps of poxvirus DNA synthesis yield concatemeric arrays of covalently linked genomes. The virus-encoded Holliday junction resolvase is required to process concatemers into unit-length genomes for packaging. Previous studies of the vaccinia virus resolvase have been problematic due to poor protein solubility. We found that fowlpox virus resolvase was much more tractable. Fowlpox resolvase formed complexes with a variety of branched DNA substrates, but not linear DNA, and had the highest affinity for a Holliday junction substrate, illustrating a previously unappreciated affinity for Holliday junctions over other substrates. The cleavage activity was monitored in fixed time assays, showing that, as with vaccinia resolvase, the fowlpox enzyme could cleave a wide array of branched DNA substrates. Single turnover kinetic analysis revealed the Holliday junction substrate was cleaved 90-fold faster than a splayed duplex substrate containing a single to double strand transition. Multiple turnover kinetic analysis, however, showed that the cleavage step was not limiting for the full reaction cycle. Cleavage by resolvase was also tightly coupled at symmetrical positions across the junction, and coupling required the complete Holliday junction structure. Last, we found that cleavage of an extruded cruciform yielded a product, which after treatment with ligase, had the properties expected for covalently closed DNA hairpin ends, as is seen for poxvirus genome monomers. These findings provide a tractable poxvirus resolvase usable for the development of small molecule inhibitors.


Subject(s)
DNA, Viral/metabolism , Fowlpox virus/enzymology , Recombinases/metabolism , DNA, Viral/chemistry , Kinetics , Nucleic Acid Conformation , Plasmids/metabolism , Protein Binding , Substrate Specificity , Virus Replication
18.
J Biol Chem ; 282(48): 34644-52, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-17890227

ABSTRACT

DNA replication, recombination, and repair can result in formation of diverse branched DNA structures. Many large DNA viruses are known to encode DNA branch nucleases, but several of the expected activities have not previously been found among poxvirus enzymes. Vaccinia encodes an enzyme, A22 resolvase, which is known to be active on four-stranded DNA junctions (Holliday junctions) or Holliday junction-like structures containing three of the four strands. Here we report that A22 resolvase in fact has a much wider substrate specificity than previously appreciated. A22 resolvase cleaves Y-junctions, single-stranded DNA flaps, transitions from double strands to unpaired single strands ("splayed duplexes"), and DNA bulges in vitro. We also report site-directed mutagenesis studies of candidate active site residues. The results identify the likely active site and support a model in which a single active site is responsible for cleavage on Holliday junctions and splayed duplexes. Lastly, we describe possible roles for the A22 resolvase DNA-branch nuclease activity in DNA replication and repair.


Subject(s)
DNA/chemistry , Vaccinia virus/enzymology , Amino Acid Sequence , Binding Sites , DNA, Cruciform/chemistry , Holliday Junction Resolvases/chemistry , Models, Genetic , Molecular Conformation , Molecular Sequence Data , Mutagenesis , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Sequence Homology, Amino Acid , Substrate Specificity , Temperature
19.
Virology ; 352(2): 466-76, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16781759

ABSTRACT

Vaccinia virus encodes an enzyme, A22R, required during DNA replication for cleaving viral DNA concatamers to yield unit-length viral genomes. The concatamer junctions contain inverted repeat sequences that can be extruded as cruciforms, yielding Holliday junctions. Previous work indicated that A22R can cleave Holliday junctions in vitro. To investigate the mechanism of action of A22R, we have optimized reaction conditions and characterized the sequence specificity of cleavage. We found that addition of 20% dimethylsulfoxide boosted product formation six-fold, resulting in improved sensitivity of cleavage assays. To analyze cleavage specificity, we took advantage of mobile Holliday junctions, in which branch migration allowed sampling of many DNA sequences. We found that A22R weakly favors cleavage at the sequence 5'-(G/C) downward arrow(A/T)-3', and so is much less sequence specific than its Escherichia coli relative, RuvC. Analysis of the reaction products revealed that A22R cleaves to leave a 3' hydroxyl at the cleaved phosphodiester bond.


Subject(s)
DNA, Viral/metabolism , Holliday Junction Resolvases/metabolism , Vaccinia virus/metabolism , Base Sequence , Binding Sites/genetics , Cations, Divalent/metabolism , DNA, Cruciform/chemistry , DNA, Cruciform/genetics , DNA, Cruciform/metabolism , DNA, Viral/chemistry , DNA, Viral/genetics , Escherichia coli/genetics , Genes, Viral , Holliday Junction Resolvases/genetics , Hydrogen-Ion Concentration , Molecular Sequence Data , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sodium Chloride , Vaccinia virus/enzymology , Vaccinia virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...