Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Med (Berl) ; 91(1): 83-94, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22864925

ABSTRACT

Elevated serum or tissue levels of lectin galactoside-binding soluble 3 binding protein (LGALS3BP) have been associated with short survival and development of metastasis in a variety of human cancers. However, the role of LGALS3BP, particularly in the context of tumor-host relationships, is still missing. Here, we show that LGALS3BP knockdown in MDA-MB-231 human breast cancer cells leads to a decreased adhesion to fibronectin, a reduced transendothelial migration and, more importantly, a reduced expression of vascular endothelial growth factor (VEGF). Production of VEGF, that was restored by exposure of silenced cells to recombinant LGALS3BP, required an intact PI3k/Akt signaling. Furthermore, we show that LGALS3BP was able to directly stimulate HUVEC tubulogenesis in a VEGF-independent, galectin-3-dependent manner. Immunohistochemical analysis of human breast cancer tissues revealed a correlation among LGALS3BP expression, VEGF expression, and blood vessel density. We propose that in addition to its prometastatic role, LGALS3BP secreted by breast cancer cells functions critically as a pro-angiogenic factor through a dual mechanism, i.e by induction of tumor VEGF and stimulation of endothelial cell tubulogenesis.


Subject(s)
Antigens, Neoplasm/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/blood supply , Carcinoma, Ductal, Breast/blood supply , Carcinoma, Lobular/blood supply , Carrier Proteins/genetics , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Vascular Endothelial Growth Factor A/genetics , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/genetics , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/pathology , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Movement , Coculture Techniques , Female , Galectin 3/metabolism , Gene Knockdown Techniques , Glycoproteins/antagonists & inhibitors , Glycoproteins/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Neovascularization, Pathologic , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
2.
PLoS One ; 6(2): e17283, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21387013

ABSTRACT

Sulfated polysaccharides from Laminaria saccharina (new name: Saccharina latissima) brown seaweed show promising activity for the treatment of inflammation, thrombosis, and cancer; yet the molecular mechanisms underlying these properties remain poorly understood. The aim of this work was to characterize, using in vitro and in vivo strategies, the anti-inflammatory, anti-coagulant, anti-angiogenic, and anti-tumor activities of two main sulfated polysaccharide fractions obtained from L. saccharina: a) L.s.-1.0 fraction mainly consisting of O-sulfated mannoglucuronofucans and b) L.s.-1.25 fraction mainly composed of sulfated fucans. Both fractions inhibited leukocyte recruitment in a model of inflammation in rats, although L.s.-1.25 appeared to be more active than L.s.-1.0. Also, these fractions inhibited neutrophil adhesion to platelets under flow. Only fraction L.s.-1.25, but not L.s.-1.0, displayed anticoagulant activity as measured by the activated partial thromboplastin time. Investigation of these fractions in angiogenesis settings revealed that only L.s.-1.25 strongly inhibited fetal bovine serum (FBS) induced in vitro tubulogenesis. This effect correlated with a reduction in plasminogen activator inhibitor-1 (PAI-1) levels in L.s.-1.25-treated endothelial cells. Furthermore, only parent sulfated polysaccharides from L. saccharina (L.s.-P) and its fraction L.s.-1.25 were powerful inhibitors of basic fibroblast growth factor (bFGF) induced pathways. Consistently, the L.s.-1.25 fraction as well as L.s.-P successfully interfered with fibroblast binding to human bFGF. The incorporation of L.s.-P or L.s.-1.25, but not L.s.-1.0 into Matrigel plugs containing melanoma cells induced a significant reduction in hemoglobin content as well in the frequency of tumor-associated blood vessels. Moreover, i.p. administrations of L.s.-1.25, as well as L.s.-P, but not L.s.-1.0, resulted in a significant reduction of tumor growth when inoculated into syngeneic mice. Finally, L.s.-1.25 markedly inhibited breast cancer cell adhesion to human platelet-coated surfaces. Thus, sulfated fucans are mainly responsible for the anti-inflammatory, anticoagulant, antiangiogenic, and antitumor activities of sulfated polysaccharides from L. saccharina brown seaweed.


Subject(s)
Biological Products/pharmacology , Laminaria/chemistry , Polysaccharides/physiology , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anticoagulants/metabolism , Anticoagulants/pharmacology , Biological Products/chemistry , Biological Products/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/physiology , Female , Fucose/chemistry , Fucose/physiology , Humans , Inflammation/pathology , Inflammation/prevention & control , Laminaria/metabolism , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Phaeophyceae/chemistry , Phaeophyceae/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Rats , Rats, Wistar , Seaweed/chemistry , Seaweed/metabolism
3.
Anticancer Res ; 29(1): 403-10, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19331179

ABSTRACT

BACKGROUND: Galectins have emerged as critical regulators of tumor progression and metastasis, by modulating different biological events including homotypic cell aggregation, apoptosis, migration, angiogenesis and immune escape. Therefore, galectin inhibitors might represent novel therapeutic agents for cancer. MATERIALS AND METHODS: A series of structural analogs of the disaccharide methyl beta-lactosaminide were screened as potential galectin inhibitors by examining their capability to block binding of galectin-1 and/or galectin-3 to LGalS3BP in solid-phase assays. To demonstrate any functional role in vitro, oligosaccharides were characterized by their ability to regulate tumor cell apoptosis and LGalS3BP-induced homotypic cell aggregation. RESULTS: Oligosaccharides differentially inhibited binding of each galectin to LGalS3BP. Compounds containing longer oligosaccharide chains were found to be potent inhibitors of both galectins under static conditions. Strikingly, the most active compound in inhibiting homotypic cell aggregation and tumor cell apoptosis was found to be allyl lactoside, which paradoxically exhibited a modest inhibitory capacity for blocking galectin-1 and -3 binding to LGalS3BP. CONCLUSION: Allyl lactoside represents a novel powerful inhibitor of tumor-associated homotypic cell aggregation and apoptosis. Further investigations are required to remodel selective and potent inhibitors capable of specifically modulating the activity of different members of the galectin family.


Subject(s)
Galectin 1/antagonists & inhibitors , Galectin 3/antagonists & inhibitors , Melanoma/drug therapy , Oligosaccharides/pharmacology , Antigens, Neoplasm , Apoptosis/drug effects , Biomarkers, Tumor , Carbohydrate Sequence , Carrier Proteins/metabolism , Cell Aggregation/drug effects , Cell Line, Tumor , Drug Synergism , Galectin 1/metabolism , Galectin 3/metabolism , Glycoproteins/metabolism , Humans , Melanoma/metabolism , Melanoma/pathology , Molecular Sequence Data
4.
Cancer Lett ; 270(2): 229-33, 2008 Nov 08.
Article in English | MEDLINE | ID: mdl-18586384

ABSTRACT

The aim of the study was to evaluate the activity of the antiangiogenic agent SU-11248 (sunitinib malate, Sutent), alone or in combination with docetaxel. To this end, animals bearing DU-145 human hormone-refractory prostate cancer (HRPC) xenografts were treated with sunitinib (40 mg/kg daily, p.o.), docetaxel (10 or 30 mg/kg/week, i.v.), a combination of sunitinib (40 mg/kg daily) and docetaxel (10 mg/kg/week) or vehicle alone. At the end of the 3-week dosing schedule, single-agent treatment induced a tumor regression of 59%, 49% and 75% for sunitinib, docetaxel 10mg/kg, and docetaxel 30 mg/kg, respectively. The combination of sunitinib with low-dose (10mg/kg) docetaxel produced a tumor regression comparable to that obtained with high-dose (30 mg/kg) docetaxel, but tolerability was higher as indicated by mice weight. Both sunitinib and docetaxel inhibited tumor regrowth after initial treatment with the alternate drug. These results suggest that sunitinib alone or in combination with low-dose docetaxel may have a role in the treatment of HRPC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Proliferation/drug effects , Prostatic Neoplasms/drug therapy , Administration, Oral , Angiogenesis Inhibitors/administration & dosage , Animals , Cell Line, Tumor , Docetaxel , Dose-Response Relationship, Drug , Drug Administration Schedule , Humans , Indoles/administration & dosage , Infusions, Intravenous , Male , Mice , Mice, Nude , Prostatic Neoplasms/pathology , Pyrroles/administration & dosage , Sunitinib , Taxoids/administration & dosage , Xenograft Model Antitumor Assays
5.
J Cell Physiol ; 216(2): 543-50, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18330889

ABSTRACT

CRC-associated P53 mutations have not been studied extensively in non-Western countries at relatively low CRC risk. We examined, for the first time, 196 paraffin-embedded CRC cases from Northern Iran for mutations in P53 exons 5-8 using PCR-direct sequencing. P53 status and mutation site/type were correlated with nuclear protein accumulation, clinicopathologic variables and data on K-ras mutations and high-level microsatellite instability (MSI-H). We detected 96 P53 mutations in 87 (44.4%) cases and protein accumulation in 84 cases (42.8%). P53 mutations correlated directly with stage and inversely with MSI-H. Distal CRCs were more frequently mutated at major CpG hotspot codons [248 (8/66, 12.1%), 175 (7/66, 10.6%), and 245 (7/66, 10.6%)], while in proximal tumors codon 213, emerged as most frequently mutated (5/28, 17.9% vs. 3/66, 4.5%, P = 0.048). Transitions at CpGs, the most common mutation type, were more frequent in non-mucinous (25% vs. 10.4% in mucinous, P = 0.032), and distal CRC (27% vs. 12.5% in proximal, P = 0.02), and correlated with K-ras transversions. Transitions at non-CpGs, second most common P53 mutation, were more frequent in proximal tumors (15.6% vs. 4.7% in distal, P = 0.01), and correlated with K-ras transitions and MSI-H. Overall frequency and types of mutations and correlations with P53 accumulation, stage and MSI-H were as reported for non-Iranian patients. However P53 mutation site/type and correlations between P53 and K-ras mutation types differed between proximal and distal CRC. The codon 213 P53 mutation that recurred in proximal CRC was previously reported as frequent in esophageal cancer from Northern Iran.


Subject(s)
Colorectal Neoplasms/genetics , DNA Mutational Analysis , Genes, ras/genetics , Microsatellite Instability , Mutation , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/pathology , Female , Genetic Predisposition to Disease , Humans , Iran , Male , Middle Aged , Retrospective Studies
6.
Glycobiology ; 17(5): 541-52, 2007 May.
Article in English | MEDLINE | ID: mdl-17296677

ABSTRACT

The anti-inflammatory, antiangiogenic, anticoagulant, and antiadhesive properties of fucoidans obtained from nine species of brown algae were studied in order to examine the influence of fucoidan origin and composition on their biological activities. All fucoidans inhibited leucocyte recruitment in an inflammation model in rats, and neither the content of fucose and sulfate nor other structural features of their polysaccharide backbones significantly affected the efficacy of fucoidans in this model. In vitro evaluation of P-selectin-mediated neutrophil adhesion to platelets under flow conditions revealed that only polysaccharides from Laminaria saccharina, L. digitata, Fucus evanescens, F. serratus, F. distichus, F. spiralis, and Ascophyllum nodosum could serve as P-selectin inhibitors. All fucoidans, except that from Cladosiphon okamuranus carrying substantial levels of 2-O-alpha-D-glucuronopyranosyl branches in the linear (1-->3)-linked poly-alpha-fucopyranoside chain, exhibited anticoagulant activity as measured by activated partial thromboplastin time whereas only fucoidans from L. saccharina, L. digitata, F. serratus, F. distichus, and F. evanescens displayed strong antithrombin activity in a platelet aggregation test. The last fucoidans potently inhibited human umbilical vein endothelial cell (HUVEC) tubulogenesis in vitro and this property correlated with decreased levels of plasminogen-activator inhibitor-1 in HUVEC supernatants, suggesting a possible mechanism of fucoidan-induced inhibition of tubulogenesis. Finally, fucoidans from L. saccharina, L. digitata, F. serratus, F. distichus, and F. vesiculosus strongly blocked MDA-MB-231 breast carcinoma cell adhesion to platelets, an effect which might have critical implications in tumor metastasis. The data presented herein provide a new rationale for the development of potential drugs for thrombosis, inflammation, and tumor progression.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Endothelial Cells/metabolism , Phaeophyceae , Polysaccharides/pharmacology , Seaweed , Umbilical Veins/metabolism , Angiogenesis Inhibitors/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Endothelial Cells/cytology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Phaeophyceae/chemistry , Plasminogen Activator Inhibitor 1/metabolism , Polysaccharides/isolation & purification , Seaweed/chemistry , Thrombosis/drug therapy , Thrombosis/metabolism , Umbilical Veins/cytology
7.
Glycobiology ; 16(3): 210-20, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16282605

ABSTRACT

Galectins, a family of structurally related carbohydrate-binding proteins, contribute to different events associated with cancer biology, including apoptosis, homotypic cell aggregation, angiogenesis and tumor-immune escape. To interfere with galectin-carbohydrate interactions during tumor progression, a current challenge is the design of specific galectin inhibitors for therapeutic purposes. Here, we report the synthesis of three novel low molecular weight synthetic lactulose amines (SLA): (1) N-lactulose-octamethylenediamine (LDO), (2) N,N'-dilactulose-octamethylenediamine (D-LDO), and (3) N,N'-dilactulose-dodecamethylenediamine (D-LDD). These compounds showed a differential ability to inhibit binding of galectin-1 and/or galectin-3 to the highly glycosylated protein 90K in solid-phase assays. In addition, each compound demonstrated selective regulatory effects in different events linked to tumor progression including tumor-cell apoptosis, homotypic cell aggregation, and endothelial cell morphogenesis. Our results suggest that galectin inhibitors with subtle differences in their carbohydrate structures may be potentially used to specifically block different steps of tumor growth and metastasis.


Subject(s)
Amines/chemical synthesis , Amines/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Endothelial Cells/drug effects , Galectins/antagonists & inhibitors , Lactulose/chemistry , Amines/blood , Amines/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/classification , Antineoplastic Agents/pharmacology , Cell Aggregation/drug effects , Cell Shape/drug effects , Cells, Cultured , Endothelial Cells/cytology , Galectins/pharmacology , Glycosylation , Humans , Molecular Structure
8.
Cancer Res ; 65(18): 8339-49, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16166311

ABSTRACT

The purpose of this study was to investigate the antiangiogenic and in vivo properties of the recently identified phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor Inositol(1,3,4,5,6) pentakisphosphate [Ins(1,3,4,5,6)P5]. Because activation of the PI3K/Akt pathway is a crucial step in some of the events leading to angiogenesis, the effect of Ins(1,3,4,5,6)P5 on basic fibroblast growth factor (FGF-2)-induced Akt phosphorylation, cell survival, motility, and tubulogenesis in vitro was tested in human umbilical vein endothelial cells (HUVEC). The effect of Ins(1,3,4,5,6)P5 on FGF-2-induced angiogenesis in vivo was evaluated using s.c. implanted Matrigel in mice. In addition, the effect of Ins(1,3,4,5,6)P5 on growth of ovarian carcinoma SKOV-3 xenograft was tested. Here, we show that FGF-2 induces Akt phosphorylation in HUVEC resulting in antiapoptotic effect in serum-deprived cells and increase in cellular motility. Ins(1,3,4,5,6)P5 blocks FGF-2-mediated Akt phosphorylation and inhibits both survival and migration in HUVEC. Moreover, Ins(1,3,4,5,6)P5 inhibits the FGF-2-mediated capillary tube formation of HUVEC plated on Matrigel and the FGF-2-induced angiogenic reaction in BALB/c mice. Finally, Ins(1,3,4,5,6)P5 blocks the s.c. growth of SKOV-3 xenografted in nude mice to the same extent than cisplatin and it completely inhibits Akt phosphorylation in vivo. These data definitively identify the Akt inhibitor Ins(1,3,4,5,6)P5 as a specific antiangiogenic and antitumor factor. Inappropriate activation of the PI3K/Akt pathway has been linked to the development of several diseases, including cancer, making this pathway an attractive target for therapeutic strategies. In this respect, Ins(1,3,4,5,6)P5, a water-soluble, natural compound with specific proapoptotic and antiangiogenic properties, might result in successful anticancer therapeutic strategies.


Subject(s)
Inositol Phosphates/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Growth Processes/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cells, Cultured , Collagen , Drug Combinations , Drug Interactions , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Fibroblast Growth Factor 2/antagonists & inhibitors , Fibroblast Growth Factor 2/pharmacology , Humans , Inositol Phosphates/metabolism , Inositol Phosphates/pharmacokinetics , Laminin , Mice , Mice, Inbred BALB C , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proteoglycans , Proto-Oncogene Proteins c-akt/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...