Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Infect Dis ; 74(8): 1401-1407, 2022 04 28.
Article in English | MEDLINE | ID: mdl-34282829

ABSTRACT

BACKGROUND: In an investigation of hospital-acquired mucormycosis cases among transplant recipients, healthcare linens (HCLs) delivered to our center were found to be contaminated with Mucorales. We describe an investigation and remediation of Mucorales contamination at the laundry supplying our center. METHODS: We performed monthly RODAC cultures of HCLs upon hospital arrival, and conducted site inspections and surveillance cultures at the laundry facility. Remediation was designed and implemented by infection prevention and facility leadership teams. RESULTS: Prior to remediation, 20% of HCLs were culture-positive for Mucorales upon hospital arrival. Laundry facility layout and processes were consistent with industry standards. Significant step-ups in Mucorales and mold culture-positivity of HCLs were detected at the post-dryer step (0% to 12% [P = .04] and 5% to 29% [P = .01], respectively). Further increases to 17% and 40% culture-positivity, respectively, were noted during pre-transport holding. Site inspection revealed heavy Mucorales-positive lint accumulation in rooftop air intake and exhaust vents that cooled driers; intake and exhaust vents that were facing each other; rooftop and plant-wide lint accumulation, including in the pre-transport clean room; uncovered carts with freshly-laundered HCLs. Following environmental remediation, quality assurance measures and education directed toward these sources, Mucorales culture-positivity of newly-delivered HCLs was reduced to 0.3% (P = .0001); area of lint-contaminated rooftop decreased from 918 m2 to 0 m2 on satellite images. CONCLUSIONS: Targeted laundry facility interventions guided by site inspections and step-wise culturing significantly reduced Mucorales-contaminated HCLs delivered to our hospital. Collaboration between infection prevention and laundry facility teams was crucial to successful remediation.


Subject(s)
Mucorales , Mucormycosis , Bedding and Linens , Delivery of Health Care , Hospitals , Humans , Mucormycosis/diagnosis , Mucormycosis/epidemiology
2.
Microb Genom ; 6(12)2020 12.
Article in English | MEDLINE | ID: mdl-33245689

ABSTRACT

Mucormycoses are invasive infections by Rhizopus species and other Mucorales. Over 10 months, four solid organ transplant (SOT) recipients at our centre developed mucormycosis due to Rhizopus microsporus (n=2), R. arrhizus (n=1) or Lichtheimia corymbifera (n=1), at a median 31.5 days (range: 13-34) post-admission. We performed whole genome sequencing (WGS) on 72 Mucorales isolates (45 R. arrhizus, 19 R. delemar, six R. microsporus, two Lichtheimia species) from these patients, from five patients with community-acquired mucormycosis, and from hospital and regional environments. Isolates were compared by core protein phylogeny and global genomic features, including genome size, guanine-cytosine percentages, shared protein families and paralogue expansions. Patient isolates fell into six core phylogenetic lineages (clades). Phylogenetic and genomic similarities of R. microsporus isolates recovered 7 months apart from two SOT recipients in adjoining hospitals suggested a potential common source exposure. However, isolates from other patients and environmental sites had unique genomes. Many isolates that were indistinguishable by core phylogeny were distinct by one or more global genomic comparisons. Certain clades were recovered throughout the study period, whereas others were found at particular time points. In conclusion, mucormycosis cases could not be genetically linked to a definitive environmental source. Comprehensive genomic analyses eliminated false associations between Mucorales isolates that would have been assigned using core phylogenetic or less extensive genomic comparisons. The genomic diversity of Mucorales mandates that multiple isolates from individual patients and environmental sites undergo WGS during epidemiological investigations. However, exhaustive surveillance of fungal populations in a hospital and surrounding community is probably infeasible.


Subject(s)
Community-Acquired Infections/microbiology , Cross Infection/microbiology , Mucorales/classification , Mucormycosis/diagnosis , Transplants/microbiology , Whole Genome Sequencing/methods , Base Composition , Female , Genetic Variation , Genome Size , High-Throughput Nucleotide Sequencing , Humans , Male , Mucorales/genetics , Mucorales/isolation & purification , Mucormycosis/microbiology , Phylogeny
3.
Clin Infect Dis ; 68(5): 850-853, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30299481

ABSTRACT

Mucormycosis outbreaks have been linked to contaminated linen. We performed fungal cultures on freshly-laundered linens at 15 transplant and cancer hospitals. At 33% of hospitals, the linens were visibly unclean. At 20%, Mucorales were recovered from >10% of linens. Studies are needed to understand the clinical significance of our findings.


Subject(s)
Bedding and Linens/standards , Disinfection , Laundry Service, Hospital , Mucorales/isolation & purification , Equipment Contamination , Humans , Infection Control , Textiles , United States
5.
Antimicrob Agents Chemother ; 59(12): 7465-70, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26392494

ABSTRACT

Precise FKS mutation rates among Candida species are undefined because studies have not systematically screened consecutive, disease-causing isolates. The Sensititre YeastOne (SYO) assay measures echinocandin MICs against Candida with less variability than reference broth microdilution methods. However, clinical breakpoint MICs may overstate caspofungin nonsusceptibility compared to other agents. Our objectives were to determine Candida FKS mutation rates by studying consecutive bloodstream isolates and to determine if discrepant susceptibility results were associated with FKS mutations. FKS hot spots were sequenced in echinocandin-intermediate and -resistant isolates and those from patients with breakthrough candidemia or ≥ 3 days of prior echinocandin exposure. Overall, 453 isolates from 384 patients underwent susceptibility testing; 16% were echinocandin intermediate or resistant. Intermediate susceptibility rates were higher for Candida glabrata than for other species (P < 0.0001) and higher for caspofungin than for other agents (P < 0.0001). Resistance rates were similar between agents. FKS mutations were detected in 5% of sequenced isolates and 2% of isolates overall. Corresponding rates among C. glabrata isolates were 8% and 4%, respectively. Among Candida albicans isolates, rates were 5% and <1%, respectively. Mutations occurred exclusively with prior echinocandin exposure and were not detected in other species. Isolates with discrepant susceptibility results did not harbor FKS mutations. Mutation rates among isolates resistant to ≥ 2, 1, and 0 agents were 75%, 13%, and 0%, respectively. In conclusion, FKS mutations were uncommon among non-C. glabrata species, even with prior echinocandin exposure. Discrepancies in echinocandin susceptibility by SYO testing were not driven by mutations and likely reflect imprecise caspofungin clinical breakpoints.


Subject(s)
Antifungal Agents/pharmacology , Candida/genetics , Candida/pathogenicity , Fungal Proteins/genetics , Candida/drug effects , Candida/isolation & purification , Candida glabrata/drug effects , Candida glabrata/genetics , Candida glabrata/isolation & purification , Candidiasis/blood , Candidiasis/microbiology , Caspofungin , Drug Resistance, Fungal/genetics , Echinocandins/pharmacology , Humans , Lipopeptides/pharmacology , Micafungin , Microbial Sensitivity Tests , Mutation Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...