Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nature ; 576(7786): 223-227, 2019 12.
Article in English | MEDLINE | ID: mdl-31802005

ABSTRACT

NASA's Parker Solar Probe mission1 recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: 'impulsive' events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions2, and 'gradual' events3,4, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only two possible processes5. These processes have been very difficult to resolve from prior observations, owing to the various transport effects that affect the energetic particle population en route to more distant spacecraft6. Here we report observations of the near-Sun energetic particle radiation environment over the first two orbits of the probe. We find a variety of energetic particle events accelerated both locally and remotely including by corotating interaction regions, impulsive events driven by acceleration near the Sun, and an event related to a coronal mass ejection. We provide direct observations of the energetic particle radiation environment in the region just above the corona of the Sun and directly explore the physics of particle acceleration and transport.

2.
Science ; 352(6286): 677-80, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27103666

ABSTRACT

Iron-60 ((60)Fe) is a radioactive isotope in cosmic rays that serves as a clock to infer an upper limit on the time between nucleosynthesis and acceleration. We have used the ACE-CRIS instrument to collect 3.55 × 10(5) iron nuclei, with energies ~195 to ~500 mega-electron volts per nucleon, of which we identify 15 (60)Fe nuclei. The (60)Fe/(56)Fe source ratio is (7.5 ± 2.9) × 10(-5) The detection of supernova-produced (60)Fe in cosmic rays implies that the time required for acceleration and transport to Earth does not greatly exceed the (60)Fe half-life of 2.6 million years and that the (60)Fe source distance does not greatly exceed the distance cosmic rays can diffuse over this time, ⪍1 kiloparsec. A natural place for (60)Fe origin is in nearby clusters of massive stars.

3.
Astrophys J ; 831(1)2016 Nov 01.
Article in English | MEDLINE | ID: mdl-34646042

ABSTRACT

Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc-1 and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc-1, with a broad maximum in the 10-50 MeV nuc-1 range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ~15 times that observed at 1 AU, and the observed local interstellar gradient of 3-346 MeV H is -0.009 ± 0.055% AU-1, consistent with models having no local interstellar gradient. The energy spectrum of electrons (e - + e +) with 2.7-74 MeV is consistent with E -1.30±0.05 and exceeds the H intensity at energies below ~50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc-1 and electrons with >3 MeV is 0.83-1.02 eV cm-3 and the ionization rate of atomic H is in the range of 1.51-1.64 × 10-17 s-1. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.

4.
Science ; 341(6142): 150-3, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23811227

ABSTRACT

On 25 August 2012, Voyager 1 was at 122 astronomical units when the steady intensity of low-energy ions it had observed for the previous 6 years suddenly dropped for a third time and soon completely disappeared as the ions streamed away into interstellar space. Although the magnetic field observations indicate that Voyager 1 remained inside the heliosphere, the intensity of cosmic ray nuclei from outside the heliosphere abruptly increased. We report the spectra of galactic cosmic rays down to ~3 × 10(6) electron volts per nucleon, revealing H and He energy spectra with broad peaks from 10 × 10(6) to 40 × 10(6) electron volts per nucleon and an increasing galactic cosmic-ray electron intensity down to ~10 × 10(6) electron volts.

5.
Hum Genet ; 132(11): 1213-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23793441

ABSTRACT

Previous evidence has shown that Parkinson disease (PD) has a heritable component, but only a small proportion of the total genetic contribution to PD has been identified. Genetic heterogeneity complicates the verification of proposed PD genes and the identification of new PD susceptibility genes. Our approach to overcome the problem of heterogeneity is to study a population isolate, the mid-western Amish communities of Indiana and Ohio. We performed genome-wide association and linkage analyses on 798 individuals (31 with PD), who are part of a 4,998 member pedigree. Through these analyses, we identified a region on chromosome 5q31.3 that shows evidence of association (p value < 1 × 10(-4)) and linkage (multipoint HLOD = 3.77). We also found further evidence of linkage on chromosomes 6 and 10 (multipoint HLOD 4.02 and 4.35 respectively). These data suggest that locus heterogeneity, even within the Amish, may be more extensive than previously appreciated.


Subject(s)
Amish/genetics , Genetic Loci , Parkinson Disease/genetics , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 5/genetics , Chromosomes, Human, Pair 6/genetics , Computational Biology , Genetic Linkage , Genetic Predisposition to Disease , Genome, Human , Genome-Wide Association Study/methods , Genotype , Humans , Indiana , Ohio , Pedigree , Polymorphism, Single Nucleotide
6.
Science ; 309(5743): 2017-20, 2005 Sep 23.
Article in English | MEDLINE | ID: mdl-16179468

ABSTRACT

Voyager 1 crossed the termination shock of the supersonic flow of the solar wind on 16 December 2004 at a distance of 94.01 astronomical units from the Sun, becoming the first spacecraft to begin exploring the heliosheath, the outermost layer of the heliosphere. The shock is a steady source of low-energy protons with an energy spectrum approximately E(-1.41 +/- 0.15) from 0.5 to approximately 3.5 megaelectron volts, consistent with a weak termination shock having a solar wind velocity jump ratio r=2.6(-0.2)(+0.4). However, in contradiction to many predictions, the intensity of anomalous cosmic ray (ACR) helium did not peak at the shock, indicating that the ACR source is not in the shock region local to Voyager 1. The intensities of approximately 10-megaelectron volt electrons, ACRs, and galactic cosmic rays have steadily increased since late 2004 as the effects of solar modulation have decreased.

7.
Science ; 246(4936): 1489-94, 1989 Dec 15.
Article in English | MEDLINE | ID: mdl-17756005

ABSTRACT

The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [>/=1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities are maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet.

8.
Science ; 233(4759): 93-7, 1986 Jul 04.
Article in English | MEDLINE | ID: mdl-17812896

ABSTRACT

During the encounter with Uranus, the cosmic ray system on Voyager 2 measured significant fluxes of energetic electrons and protons in the regions of the planets magnetosphere where these particles could be stably trapped. The radial distribution of electrons with energies of megaelectron volts is strongly modulated by the sweeping effects ofthe three major inner satellites Miranda, Ariel, and Umbriel. The phase space density gradient of these electrons indicates that they are diffusing radially inward from a source in the outer magnetosphere or magnetotail. Differences in the energy spectra of protons having energies of approximately 1 to 8 megaelectron volts from two different directions indicate a strong dependence on pitch angle. From the locations of the absorption signatures observed in the electron flux, a centered dipole model for the magnetic field of Uranus with a tilt of 60.1 degrees has been derived, and a rotation period of the planet of 17.4 hours has also been calculated. This model provides independent confirmaton of more precise determinations made by other Voyager experiments.

9.
Science ; 215(4532): 577-82, 1982 Jan 29.
Article in English | MEDLINE | ID: mdl-17771281

ABSTRACT

Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the >/= 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more variable, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0- million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approximately 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.

10.
Science ; 212(4491): 231-4, 1981 Apr 10.
Article in English | MEDLINE | ID: mdl-17783835

ABSTRACT

Voyager 1 provided the first look at Saturn's magnetotail and magnetosphere during relatively quiet interplanetary conditions. This report discusses the energetic particle populations of the outer magnetosphere of Saturn and absorption features associated with Titan and Rhea, and compares these observations with Pioneer 11 data of a year earlier. The trapped proton fluxes had soft spectra, represented by power laws E(-gamma) in kinetic energy E, with gamma approximately 7 in the outer magnetosphere and gamma approximately 9 in the magnetotail. Structure associated with the magnetotial was observed as close as 10 Saturn radii (R(s)) on the outbound trajectory. The proton and electron fluxes in the outer magnetosphere and in the magnetotail were variable and appeared to respond to changes in interplanetary conditions. Protons with energies >/= 2 million electron volts had free access to the magnetosphere from interplanetary space and were not stably trapped outside approximately 7.5 R(s).

11.
Science ; 206(4421): 984-7, 1979 Nov 23.
Article in English | MEDLINE | ID: mdl-17733919

ABSTRACT

The Voyager 2 encounter has enhanced our understanding of earlier results and provided measurements beyond 160 Jupiter radii (R(J)) in the magnetotail. Significant fluxes of energetic sulfur and oxygen nuclei (4 to 15 million electron volts per nucleon) of Jovian origin were observed inside 25 R(J), and the gradient in phase space density at 12 R(J) indicates that the ions are diffusing inward. A substantially longer time delay versus distance was found for proton flux maxima in the active hemisphere in the magnetotail at Jovicentric longitudes lambda(III), = 260 degrees to 320 degrees than in the inactive hemisphere at lambda(III), = 85 degrees to l10 degrees . These delays can be related to the radial motion of plasma expanding into the magnetotail, and differences in the expansion speeds between the active and inactive hemispheres can produce rarefaction regions in trapped particles. It is suggested that the 10-hour modulation of interplanetary Jovian electrons may be associated with the arrival at the dawn magnetopause of a rarefaction region each planetary rotation.

12.
Science ; 204(4396): 1003-7, 1979 Jun 01.
Article in English | MEDLINE | ID: mdl-17800440

ABSTRACT

The observations of the cosmic-ray subsystem have added significantly to our knowledge of Jupiter's magnetosphere. The most surprising result is the existence of energetic sulfur, sodium, and oxygen nuclei with energies above 7 megaelectron volts per nucleon which were found inside of Io's orbit. Also, significant fluxes of similarly energetic ions reflecting solar cosmic-ray composition were observed throughout the magnetosphere beyond 11 times the radius of Jupiter. It was also found that energetic protons are enhanced by 30 to 70 percent in the active hemisphere. Finally, the first observations were made of the magnetospheric tail in the dawn direction out to 160 Jupiter radii.

SELECTION OF CITATIONS
SEARCH DETAIL
...