Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Cell Rep ; 41(8): 111686, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36417868

ABSTRACT

Using spatial cell-type-enriched transcriptomics, we compare plaque-induced gene (PIG) expression in microglia-touching plaques, neighboring plaques, and far from plaques in an aged Alzheimer's mouse model with late plaque development. In 18-month-old APPNL-F/NL-F knockin mice, with and without the Alzheimer's disease risk mutation Trem2R47H/R47H, we report that expression of 38/55 PIGs have plaque-induced microglial upregulation, with a subset only upregulating in microglia directly contacting plaques. For seven PIGs, including Trem2, this upregulation is prevented in APPNL-F/NL-FTrem2R47H/R47H mice. These TREM2-dependent genes are all involved in phagocytic and degradative processes that we show correspond to a decrease in phagocytic markers and an increase in the density of small plaques in Trem2-mutated mice. Furthermore, despite the R47H mutation preventing increased Trem2 gene expression, TREM2 protein levels and microglial density are still marginally increased on plaques. Hence, both microglial contact with plaques and functioning TREM2 are necessary for microglia to respond appropriately to amyloid pathology.


Subject(s)
Alzheimer Disease , Amyloidosis , Animals , Mice , Microglia/metabolism , Alzheimer Disease/metabolism , Plaque, Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
2.
Mol Neurodegener ; 16(1): 47, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34266459

ABSTRACT

BACKGROUND: Microglia are active modulators of Alzheimer's disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. METHODS: AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer's disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. RESULTS: Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. CONCLUSIONS: Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer's disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Gene Knock-In Techniques/methods , Microglia/metabolism , Plaque, Amyloid/pathology , Synaptic Transmission/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Humans , Mice
3.
Hum Mol Genet ; 29(19): 3224-3248, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32959884

ABSTRACT

Genome-wide association studies have reported that, amongst other microglial genes, variants in TREM2 can profoundly increase the incidence of developing Alzheimer's disease (AD). We have investigated the role of TREM2 in primary microglial cultures from wild type mice by using siRNA to decrease Trem2 expression, and in parallel from knock-in mice heterozygous or homozygous for the Trem2 R47H AD risk variant. The prevailing phenotype of Trem2 R47H knock-in mice was decreased expression levels of Trem2 in microglia, which resulted in decreased density of microglia in the hippocampus. Overall, primary microglia with reduced Trem2 expression, either by siRNA or from the R47H knock-in mice, displayed a similar phenotype. Comparison of the effects of decreased Trem2 expression under conditions of lipopolysaccharide (LPS) pro-inflammatory or IL-4 anti-inflammatory stimulation revealed the importance of Trem2 in driving a number of the genes up-regulated in the anti-inflammatory phenotype. RNA-seq analysis showed that IL-4 induced the expression of a program of genes including Arg1 and Ap1b1 in microglia, which showed an attenuated response to IL-4 when Trem2 expression was decreased. Genes showing a similar expression profile to Arg1 were enriched for STAT6 transcription factor recognition elements in their promoter, and Trem2 knockdown decreased levels of STAT6. LPS-induced pro-inflammatory stimulation suppressed Trem2 expression, thus preventing TREM2's anti-inflammatory drive. Given that anti-inflammatory signaling is associated with tissue repair, understanding the signaling mechanisms downstream of Trem2 in coordinating the pro- and anti-inflammatory balance of microglia, particularly mediating effects of the IL-4-regulated anti-inflammatory pathway, has important implications for fighting neurodegenerative disease.


Subject(s)
Gene Expression Regulation , Inflammation Mediators/metabolism , Inflammation/immunology , Membrane Glycoproteins/physiology , Microglia/immunology , Mutation , Receptors, Immunologic/physiology , Transcriptome , Animals , Animals, Newborn , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , RNA-Seq , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism
4.
J Neurosci Res ; 97(12): 1728-1741, 2019 12.
Article in English | MEDLINE | ID: mdl-31392765

ABSTRACT

Dementia is now the leading cause of death in the United Kingdom, accounting for over 12% of all deaths and is the fifth most common cause of death worldwide. As treatments for heart disease and cancers improve and the population ages, the number of sufferers will only increase, with the chance of developing dementia doubling every 5 years after the age of 65. Finding an effective treatment is ever more critical to avert this pandemic health (and economic) crisis. To date, most dementia-related research has focused on the cortex and the hippocampus; however, with dementia becoming more fully recognized as aspects of diseases historically categorized as motor disorders (e.g., Parkinson's and Huntington's diseases), the role of the basal ganglia in dementia is coming to the fore. Conversely, it is highly likely that neuronal pathways in these structures traditionally considered as spared in Alzheimer's disease are also affected, particularly in later stages of the disease. In this review, we examine some of the limited evidence linking the basal ganglia to dementia.


Subject(s)
Basal Ganglia/physiopathology , Dementia/physiopathology , Neurodegenerative Diseases/physiopathology , Animals , Basal Ganglia/pathology , Dementia/genetics , Dementia/pathology , Dopamine/physiology , Dopaminergic Neurons/physiology , Genetic Predisposition to Disease , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons/physiology
5.
J Neurosci Res ; 97(12): 1624-1635, 2019 12.
Article in English | MEDLINE | ID: mdl-31353533

ABSTRACT

Huntington's disease (HD), an inherited neurodegenerative disorder that principally affects striatum and cerebral cortex, is generally thought to have an adult onset. However, a small percentage of cases develop symptoms before 20 years of age. This juvenile variant suggests that brain development may be altered in HD. Indeed, recent evidence supports an important role of normal huntingtin during embryonic brain development and mutations in this protein cause cortical abnormalities. Functional studies also demonstrated that the cerebral cortex becomes hyperexcitable with disease progression. In this review, we examine clinical and experimental evidence that cortical development is altered in HD. We also provide preliminary evidence that cortical pyramidal neurons from R6/2 mice, a model of juvenile HD, are hyperexcitable and display dysmorphic processes as early as postnatal day 7. Further, some symptomatic mice present with anatomical abnormalities reminiscent of human focal cortical dysplasia, which could explain the occurrence of epileptic seizures in this genetic mouse model and in children with juvenile HD. Finally, we discuss recent treatments aimed at correcting abnormal brain development.


Subject(s)
Cerebral Cortex/growth & development , Cerebral Cortex/physiopathology , Cortical Excitability , Huntington Disease/physiopathology , Neurons/physiology , Animals , Cerebral Cortex/pathology , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntington Disease/pathology , Mice, Transgenic , Neurons/pathology
6.
Brain Commun ; 1(1): fcz022, 2019.
Article in English | MEDLINE | ID: mdl-32274467

ABSTRACT

Genome-wide association studies of late-onset Alzheimer's disease risk have previously identified genes primarily expressed in microglia that form a transcriptional network. Using transgenic mouse models of amyloid deposition, we previously showed that many of the mouse orthologues of these risk genes are co-expressed and associated with amyloid pathology. In this new study, we generate an improved RNA-seq-derived network that is expressed in amyloid-responsive mouse microglia and we statistically compare this with gene-level variation in previous human Alzheimer's disease genome-wide association studies to predict at least four new risk genes for the disease (OAS1, LAPTM5, ITGAM/CD11b and LILRB4). Of the mouse orthologues of these genes Oas1a is likely to respond directly to amyloid at the transcriptional level, similarly to established risk gene Trem2, because the increase in Oas1a and Trem2 transcripts in response to amyloid deposition in transgenic mice is significantly higher than both the increase of the average microglial transcript and the increase in microglial number. In contrast, the mouse orthologues of LAPTM5, ITGAM/CD11b and LILRB4 (Laptm5, Itgam/CD11b and Lilra5) show increased transcripts in the presence of amyloid plaques similar in magnitude to the increase of the average microglial transcript and the increase in microglia number, except that Laptm5 and Lilra5 transcripts increase significantly quicker than the average microglial transcript as the plaque load becomes dense. This work suggests that genetic variability in the microglial response to amyloid deposition is a major determinant for Alzheimer's disease risk, and identification of these genes may help to predict the risk of developing Alzheimer's disease. These findings also provide further insights into the mechanisms underlying Alzheimer's disease for potential drug discovery.

7.
EBioMedicine ; 39: 422-435, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30555043

ABSTRACT

BACKGROUND: Progression of Alzheimer's disease is thought initially to depend on rising amyloidß and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidß, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. METHODS: CA1 synaptic transmission and plasticity were investigated using in vitro electrophysiology. Microglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. FINDINGS: The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. INTERPRETATION: The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidß levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition. FUNDING: GlaxoSmithKline; BBSRC; UCL; ARUK; MRC.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Cognition/physiology , Hippocampus/physiology , Microglia/physiology , Presenilin-1/genetics , Animals , Behavior, Animal , Disease Models, Animal , Hemizygote , Hippocampus/metabolism , Humans , Male , Maze Learning , Mice , Mice, Transgenic , Microglia/metabolism , Synaptic Transmission
8.
Article in English | MEDLINE | ID: mdl-30745408

ABSTRACT

Mouse models of Alzheimer's disease have commonly used transgenic overexpression of genes involved in production of amyloid ß (APP and/or PSEN1/2) or Tau (MAPT) with mutations that result in familial forms of dementia. We discuss possible improvements that may create full models while avoiding the problems of overexpression and report synaptic results in APPKI models. We stress use of inappropriate controls without overexpression of the normal human protein and the mismatch between the learning deficits reported in mice with plaques but no tangles and the human condition. We focus on Tau overexpression, including new data that support previous reports of the grossly nonlinear relationship between Tau overexpression and neurofibrillary tangle load, with a twofold increase in Tau protein, resulting in a 100-fold increase in tangle density. These data also support the hypothesis that a high concentration of soluble Tau, in overexpression models, plays an important direct role in neurodegeneration, rather than only via aggregation. Finally, we hypothesize that there is an optimal concentration range over which Tau can bind to microtubules and a threshold beyond which much of the overexpressed protein is unable to bind. The excess thus causes toxicity in ways not necessarily related to the process in human dementias.

9.
Cereb Cortex ; 27(6): 3437-3448, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28334103

ABSTRACT

Neuronal pentraxin 1 (NPTX1) has been implicated in Alzheimer's disease, being present in and around dystrophic neurons in plaques, affecting glutamatergic transmission postsynaptically and mediating effects of amyloidß. Here, we confirm the presence of NPTX1 around plaques in postmortem Alzheimer's disease brain and report that acutely applied human NPTX1 increases paired-pulse ratio at mouse CA3-CA1 hippocampal synapses, indicating a decrease in glutamate release. In contrast, chronic exposure to NPTX1, NPTX2, or NPTX receptor decreases paired-pulse ratio, mimicking some of the earliest changes in mice expressing familial Alzheimer's disease genes. The peripheral pentraxin, serum amyloid P component (SAP), causes similar synaptic effects to NPTX1. The presence of SAP on amyloid plaques in Alzheimer's disease confirms that it can enter the brain. We show that SAP and neuronal pentraxins can interact and that SAP can enter the brain if the blood-brain barrier is compromised, suggesting that peripheral pentraxins could affect central synaptic transmission via this interaction, especially in the event of blood-brain barrier breakdown.


Subject(s)
Blood-Brain Barrier/physiopathology , C-Reactive Protein/metabolism , Glutamic Acid/metabolism , Hippocampus/physiology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Animals, Newborn , Blood-Brain Barrier/pathology , C-Reactive Protein/genetics , C-Reactive Protein/pharmacology , Evoked Potentials/drug effects , Evoked Potentials/physiology , Female , GABA Antagonists/pharmacology , HEK293 Cells , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/pharmacology , Neurons/drug effects , Pyridazines/pharmacology , Serum Amyloid P-Component/pharmacology , Synapses/drug effects , Synapses/genetics , Synapses/metabolism
10.
CNS Drugs ; 30(10): 951-83, 2016 10.
Article in English | MEDLINE | ID: mdl-27421270

ABSTRACT

A wide range of support is available to help smokers to quit and to aid attempts at harm reduction, including three first-line smoking cessation medications: nicotine replacement therapy, varenicline and bupropion. Despite the efficacy of these, there is a continual need to diversify the range of medications so that the needs of tobacco users are met. This paper compares the first-line smoking cessation medications with (1) two variants of these existing products: new galenic formulations of varenicline and novel nicotine delivery devices; and (2) 24 alternative products: cytisine (novel outside Central and Eastern Europe), nortriptyline, other tricyclic antidepressants, electronic cigarettes, clonidine (an anxiolytic), other anxiolytics (e.g. buspirone), selective serotonin reuptake inhibitors, supplements (e.g. St John's wort), silver acetate, Nicobrevin, modafinil, venlafaxine, monoamine oxidase inhibitors (MAOIs), opioid antagonists, nicotinic acetylcholine receptor (nAChR) antagonists, glucose tablets, selective cannabinoid type 1 receptor antagonists, nicotine vaccines, drugs that affect gamma-aminobutyric acid (GABA) transmission, drugs that affect N-methyl-D-aspartate (NMDA) receptors, dopamine agonists (e.g. levodopa), pioglitazone (Actos; OMS405), noradrenaline reuptake inhibitors and the weight management drug lorcaserin. Six 'ESCUSE' criteria-relative efficacy, relative safety, relative cost, relative use (overall impact of effective medication use), relative scope (ability to serve new groups of patients) and relative ease of use-are used. Many of these products are in the early stages of clinical trials; however, cytisine looks most promising in having established efficacy and safety with low cost. Electronic cigarettes have become very popular, appear to be efficacious and are safer than smoking, but issues of continued dependence and possible harms need to be considered.


Subject(s)
Harm Reduction/drug effects , Nicotinic Agonists/therapeutic use , Smoking Cessation/methods , Smoking/drug therapy , Humans
11.
Neural Plast ; 2016: 6170509, 2016.
Article in English | MEDLINE | ID: mdl-26881123

ABSTRACT

The laying down of memory requires strong stimulation resulting in specific changes in synaptic strength and corresponding changes in size of dendritic spines. Strong stimuli can also be pathological, causing a homeostatic response, depressing and shrinking the synapse to prevent damage from too much Ca(2+) influx. But do all types of dendritic spines serve both of these apparently opposite functions? Using confocal microscopy in organotypic slices from mice expressing green fluorescent protein in hippocampal neurones, the size of individual spines along sections of dendrite has been tracked in response to application of tetraethylammonium. This strong stimulus would be expected to cause both a protective homeostatic response and long-term potentiation. We report separation of these functions, with spines of different sizes reacting differently to the same strong stimulus. The immediate shrinkage of large spines suggests a homeostatic protective response during the period of potential danger. In CA1, long-lasting growth of small spines subsequently occurs consolidating long-term potentiation but only after the large spines return to their original size. In contrast, small spines do not change in dentate gyrus where potentiation does not occur. The separation in time of these changes allows clear functional differentiation of spines of different sizes.


Subject(s)
Dendritic Spines/physiology , Hippocampus/cytology , Hippocampus/physiology , Homeostasis , Long-Term Potentiation , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Animals , Cells, Cultured , Dendritic Spines/drug effects , Excitatory Postsynaptic Potentials/drug effects , Female , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Male , Mice , Pyramidal Cells/drug effects , Tetraethylammonium/pharmacology
12.
Neuromolecular Med ; 18(1): 146-53, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26782175

ABSTRACT

Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD.


Subject(s)
Dopamine/physiology , Hippocampus/physiopathology , Huntington Disease/physiopathology , Neuronal Plasticity , Animals , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Huntingtin Protein/genetics , Huntington Disease/metabolism , Long-Term Synaptic Depression , Male , Mice , Mice, Transgenic , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Synaptic Transmission
13.
Brain ; 138(Pt 7): 1992-2004, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25981962

ABSTRACT

Detecting and treating Alzheimer's disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer's disease is rising amyloid-ß. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-ß peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-ß peptides in a mouse model of increasing amyloid-ß ('TASTPM', transgenic for familial Alzheimer's disease genes APP/PSEN1). In the third postnatal week, several amyloid-ß peptides were above the limit of detection, including amyloid-ß40, amyloid-ß38 and amyloid-ß42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-ß levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-ß40 rose by ∼7-fold, but amyloid-ß42 rose by 25-fold, increasing the amyloid-ß42:amyloid-ß40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7-9; consistent with the proposed physiological effect of amyloid-ß) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-ß levels and amyloid-ß42:amyloid-ß40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2-4 months including synaptic genes being strongly affected but often showing significant changes only by 4 months. We thus demonstrate that, in a mouse model of rising amyloid-ß, the initial deposition of plaques does not occur until several months after the first amyloid-ß becomes detectable but coincides with a rapid acceleration in the rise of amyloid-ß levels and the amyloid-ß42:amyloid-ß40 ratio. Prior to acceleration, however, there is already a pronounced synaptic dysfunction, reflected as changes in synaptic transmission and altered gene expression, indicating that restoring synaptic function early in the disease progression may represent the earliest possible target for intervention in the onset of Alzheimer's disease.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Synaptic Transmission/physiology , Animals , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Immunoprecipitation , Mass Spectrometry , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Patch-Clamp Techniques , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Transcriptome
14.
Neurodegener Dis ; 15(2): 93-108, 2015.
Article in English | MEDLINE | ID: mdl-25871323

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a late-onset fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the gene coding for the protein huntingtin and is characterised by progressive motor, psychiatric and cognitive decline. We previously demonstrated that normal synaptic function in HD could be restored by application of dopamine receptor agonists, suggesting that changes in the release or bioavailability of dopamine may be a contributing factor to the disease process. OBJECTIVE: In the present study, we examined the properties of midbrain dopaminergic neurones and dopamine release in presymptomatic and symptomatic transgenic HD mice. METHODS AND RESULTS: Using intracellular sharp recordings and immunohistochemistry, we found that neuronal excitability was increased due to a loss of slow afterhyperpolarisation and that these changes were related to an apparent functional loss and abnormal distribution of SK3 channels (KCa2.3 encoded by the KCNN3 gene), a class of small-conductance calcium-activated potassium channels. Electrochemical detection of dopamine showed that this observation was associated with an enhanced dopamine release in presymptomatic transgenic mice and a drastic reduction in symptomatic animals. These changes occurred in the context of a progressive expansion in the CAG repeat number and nuclear localisation of mutant protein within the substantia nigra pars compacta. CONCLUSIONS: Dopaminergic neuronal dysfunction is a key early event in HD disease progression. The initial increase in dopamine release appears to be related to a loss of SK3 channel function, a protein containing a polyglutamine tract. Implications for polyglutamine-mediated sequestration of SK3 channels, dopamine-associated DNA damage and CAG expansion are discussed in the context of HD.


Subject(s)
Brain/pathology , Dopaminergic Neurons/physiology , Huntington Disease/pathology , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Animals , Biophysical Phenomena/genetics , Disease Models, Animal , Dopamine/metabolism , Electric Stimulation , Female , Gene Expression Regulation/genetics , Humans , Huntingtin Protein , Huntington Disease/genetics , In Vitro Techniques , Male , Membrane Potentials/genetics , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Trinucleotide Repeat Expansion/genetics , Tyrosine 3-Monooxygenase/metabolism
15.
Cell Rep ; 10(4): 633-44, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25620700

ABSTRACT

We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of "amyloid" transgenic mice (mutant human APP, PSEN1, or APP/PSEN1) and "TAU" transgenic mice (mutant human MAPT gene). Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS) hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.


Subject(s)
Gene Expression Regulation , Genome-Wide Association Study , Plaque, Amyloid/genetics , tau Proteins/genetics , Animals , Brain/metabolism , Dementia/metabolism , Humans , Mice , Mice, Transgenic , Plaque, Amyloid/metabolism , tau Proteins/metabolism
16.
J Mater Chem B ; 3(25): 5001-5004, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-32262453

ABSTRACT

We report the application of multiphoton microfabrication to prepare conducting polymer (CP)-based biomaterials that were capable of drug delivery and interacting with brain tissue ex vivo, thereby highlighting the potential of multiphoton lithography to prepare electroactive biomaterials which may function as implantable neural biointerfaces (e.g. electrodes).

17.
Hippocampus ; 24(12): 1413-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25208523

ABSTRACT

Glycogen synthase kinase-3 (GSK3), particularly the isoform GSK3ß, has been implicated in a wide range of physiological systems and neurological disorders including Alzheimer's Disease. However, the functional importance of GSK3α has been largely untested. The multifunctionality of GSK3 limits its potential as a drug target because of inevitable side effects. Due to its greater expression in the CNS, GSK3ß rather than GSK3α has also been assumed to be of primary importance in synaptic plasticity. Here, we investigate bidirectional long-term synaptic plasticity in knockin mice with a point mutation in GSK3α or GSK3ß that prevents their inhibitory regulation. We report that only the mutation in GSK3α affects long-term potentiation (LTP) and depression (LTD). This stresses the importance of investigating isoform specificity for GSK3 in all systems and suggests that GSK3α should be investigated as a drug target in cognitive disorders including Alzheimer's Disease.


Subject(s)
CA1 Region, Hippocampal/enzymology , CA3 Region, Hippocampal/enzymology , Glycogen Synthase Kinase 3/metabolism , Neuronal Plasticity/physiology , Synapses/enzymology , Aging/physiology , Animals , CA1 Region, Hippocampal/growth & development , CA3 Region, Hippocampal/growth & development , Excitatory Postsynaptic Potentials/physiology , Gene Knock-In Techniques , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Isoenzymes , Male , Mice, Transgenic , Mutation , Tissue Culture Techniques
18.
J Neurophysiol ; 107(2): 677-91, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072510

ABSTRACT

The R6/2 mouse is the most frequently used model for experimental and preclinical drug trials in Huntington's disease (HD). When the R6/2 mouse was first developed, it carried exon 1 of the huntingtin gene with ~150 cytosine-adenine-guanine (CAG) repeats. The model presented with a rapid and aggressive phenotype that shared many features with the human condition and was particularly similar to juvenile HD. However, instability in the CAG repeat length due to different breeding practices has led to both decreases and increases in average CAG repeat lengths among colonies. Given the inverse relationship in human HD between CAG repeat length and age at onset and to a degree, the direct relationship with severity of disease, we have investigated the effect of altered CAG repeat length. Four lines, carrying ~110, ~160, ~210, and ~310 CAG repeats, were examined using a battery of tests designed to assess the basic R6/2 phenotype. These included electrophysiological properties of striatal medium-sized spiny neurons, motor activity, inclusion formation, and protein expression. The results showed an unpredicted, inverted "U-shaped" relationship between CAG repeat length and phenotype; increasing the CAG repeat length from 110 to 160 exacerbated the R6/2 phenotype, whereas further increases to 210 and 310 CAG repeats greatly ameliorated the phenotype. These findings demonstrate that the expected relationship between CAG repeat length and disease severity observed in humans is lost in the R6/2 mouse model and highlight the importance of CAG repeat-length determination in preclinical drug trials that use this model.


Subject(s)
Genetic Predisposition to Disease/genetics , Huntington Disease/genetics , Huntington Disease/physiopathology , Phenotype , Trinucleotide Repeat Expansion/genetics , Analysis of Variance , Animals , Body Weight/genetics , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Disease Models, Animal , Disease Progression , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/physiology , Exploratory Behavior/physiology , Genotype , Humans , Huntingtin Protein , Huntington Disease/metabolism , Huntington Disease/pathology , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Muscle Strength/genetics , N-Methylaspartate/pharmacology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/pathology , Neurons/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Patch-Clamp Techniques , Rotarod Performance Test , Seizures/etiology , Seizures/genetics
19.
Front Syst Neurosci ; 5: 28, 2011.
Article in English | MEDLINE | ID: mdl-21617735

ABSTRACT

Dopamine, via activation of D1 receptors, enhances N-methyl-d-aspartate (NMDA) receptor-mediated responses in striatal medium-sized spiny neurons. However, the role of specific NMDA receptor subunits in this enhancement remains unknown. Here we used genetic and pharmacological tools to dissect the contribution of NR1 and NR2A/B subunits to NMDA responses and their modulation by dopamine receptors. We demonstrate that D1 enhancement of NMDA responses does not occur or is significantly reduced in mice with genetic knock-down of NR1 subunits, indicating a critical role of these subunits. Interestingly, spontaneous and evoked α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptor-mediated responses were significantly enhanced in NR1 knock-down animals, probably as a compensatory mechanism for the marked reduction in NMDA receptor function. The NMDA receptor subunits NR2A and NR2B played differential roles in D1 modulation. Whereas genetic deletion or pharmacological blockade of NR2A subunits enhanced D1 potentiation of NMDA responses, blockade of NR2B subunits reduced this potentiation, suggesting that these regulatory subunits of the NMDA receptor counterbalance their respective functions. In addition, using D1 and D2 receptor EGFP-expressing mice, we demonstrate that NR2A subunits contribute more to NMDA responses in D1-MSSNs, whereas NR2B subunits contribute more to NMDA responses in D2 cells. The differential contribution of discrete receptor subunits to NMDA responses and dopamine modulation in the striatum has important implications for synaptic plasticity and selective neuronal vulnerability in disease states.

20.
ASN Neuro ; 3(3): e00060, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21542802

ABSTRACT

HD (Huntington's disease) is characterized by dysfunction and death of striatal MSNs (medium-sized spiny neurons). Excitotoxicity, transcriptional dysregulation and mitochondrial abnormalities are among the mechanisms that are proposed to play roles in HD pathogenesis. To determine the extent of cell-autonomous effects of mhtt (mutant huntingtin) protein on vulnerability to excitotoxic insult in MSNs in vivo, we measured the number of degenerating neurons in response to intrastriatal injection of QA (quinolinic acid) in presymptomatic and symptomatic transgenic (D9-N171-98Q, also known as DE5) mice that express mhtt in MSNs but not in cortex. After QA, the number of degenerating neurons in presymptomatic DE5 mice was not significantly different from the number in WT (wild-type) controls, suggesting the early, increased vulnerability to excitotoxicity demonstrated in other HD mouse models has a largely non-cell-autonomous component. Conversely, symptomatic DE5 mice showed significantly fewer degenerating neurons relative to WT, implying the resistance to excitotoxicity observed at later ages has a primarily cell-autonomous origin. Interestingly, mitochondrial complex II respiration was enhanced in striatum of symptomatic mice, whereas it was reduced in presymptomatic mice, both relative to their age-matched controls. Consistent with the QA data, MSNs from symptomatic mice showed decreased NMDA (N-methyl-d-aspartate) currents compared with age-matched controls, suggesting that in addition to aging, cell-autonomous mechanisms mitigate susceptibility to excitotoxicity in the symptomatic stage. Also, symptomatic DE5 mice did not display some of the electrophysiological alterations present in other HD models, suggesting that blocking the expression of mhtt in cortical neurons may restore corticostriatal function in HD.


Subject(s)
Aging/physiology , Corpus Striatum/physiology , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Prosencephalon/physiology , Animals , Corpus Striatum/cytology , Corpus Striatum/drug effects , Corpus Striatum/pathology , Disease Models, Animal , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Complex II/physiology , Electrophysiology , Huntingtin Protein , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/drug effects , N-Methylaspartate/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/pathology , Nuclear Proteins/genetics , Prosencephalon/anatomy & histology , Prosencephalon/drug effects , Prosencephalon/pathology , Quinolinic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...