Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21393, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725408

ABSTRACT

A novel Gram-stain negative, aerobic, halotolerant, motile, rod-shaped, predatory bacterium ASxL5T, was isolated from a bovine slurry tank in Nottinghamshire, UK using Campylobacter hyointestinalis as prey. Other Campylobacter species and members of the Enterobacteriaceae were subsequently found to serve as prey. Weak axenic growth on Brain Heart Infusion agar was achieved upon subculture without host cells. The optimal growth conditions were 37 °C, at pH 7. Transmission electron microscopy revealed some highly unusual morphological characteristics related to prey availability. Phylogenetic analyses using 16S rRNA gene sequences showed that the isolate was related to members of the Oceanospirillaceae family but could not be classified clearly as a member of any known genus. Whole genome sequencing of ASxL5T confirmed the relationship to members the Oceanospirillaceae. Database searches revealed that several ASxL5T share 16S rRNA gene sequences with several uncultured bacteria from marine, and terrestrial surface and subsurface water. We propose that strain ASxL5T represents a novel species in a new genus. We propose the name Venatorbacter cucullus gen. nov., sp. nov. with ASxL5T as the type strain.


Subject(s)
Antibiosis , Cattle/microbiology , Oceanospirillaceae/genetics , Oceanospirillaceae/physiology , RNA, Ribosomal, 16S/genetics , Animals , Genome, Bacterial , Oceanospirillaceae/ultrastructure , Phylogeny , Waste Products/analysis
2.
Front Microbiol ; 10: 3030, 2019.
Article in English | MEDLINE | ID: mdl-32010094

ABSTRACT

Worldwide Campylobacter jejuni is a leading cause of foodborne disease. Contamination of chicken meat with digesta from C. jejuni-positive birds during slaughter and processing is a key route of transmission to humans through the food chain. Colonization of chickens with C. jejuni elicits host innate immune responses that may be modulated by dietary additives to provide a reduction in the number of campylobacters colonizing the gastrointestinal tract and thereby reduce the likelihood of human exposure to an infectious dose. Here we report the effects of prebiotic galacto-oligosaccharide (GOS) on broiler chickens colonized with C. jejuni when challenged at either an early stage in development at 6 days of age or 20 days old when campylobacters are frequently detected in commercial flocks. GOS-fed birds had increased growth performance, but the levels of C. jejuni colonizing the cecal pouches were unchanged irrespective of the age of challenge. Dietary GOS modulated the immune response to C. jejuni by increasing cytokine IL-17A expression at colonization. Correspondingly, reduced diversity of the cecal microbiota was associated with Campylobacter colonization in GOS-fed birds. In birds challenged at 6 days-old the reduction in microbial diversity was accompanied by an increase in the relative abundance of Escherichia spp. Whilst immuno-modulation of the Th17 pro-inflammatory response did not prevent C. jejuni colonization of the intestinal tract of broiler chickens, the study highlights the potential for combinations of prebiotics, and specific competitors (synbiotics) to engage with the host innate immunity to reduce pathogen burdens.

3.
Microbiome ; 6(1): 88, 2018 05 12.
Article in English | MEDLINE | ID: mdl-29753324

ABSTRACT

BACKGROUND: Campylobacters are an unwelcome member of the poultry gut microbiota in terms of food safety. The objective of this study was to compare the microbiota, inflammatory responses, and zootechnical parameters of broiler chickens not exposed to Campylobacter jejuni with those exposed either early at 6 days old or at the age commercial broiler chicken flocks are frequently observed to become colonized at 20 days old. RESULTS: Birds infected with Campylobacter at 20 days became cecal colonized within 2 days of exposure, whereas birds infected at 6 days of age did not show complete colonization of the sample cohort until 9 days post-infection. All birds sampled thereafter were colonized until the end of the study at 35 days (mean 6.1 log10 CFU per g of cecal contents). The cecal microbiota of birds infected with Campylobacter were significantly different to age-matched non-infected controls at 2 days post-infection, but generally, the composition of the cecal microbiota were more affected by bird age as the time post infection increased. The effects of Campylobacter colonization on the cecal microbiota were associated with reductions in the relative abundance of OTUs within the taxonomic family Lactobacillaceae and the Clostridium cluster XIVa. Specific members of the Lachnospiraceae and Ruminococcaceae families exhibit transient shifts in microbial community populations dependent upon the age at which the birds become colonized by C. jejuni. Analysis of ileal and cecal chemokine/cytokine gene expression revealed increases in IL-6, IL-17A, and Il-17F consistent with a Th17 response, but the persistence of the response was dependent on the stage/time of C. jejuni colonization that coincide with significant reductions in the abundance of Clostridium cluster XIVa. CONCLUSIONS: This study combines microbiome data, cytokine/chemokine gene expression with intestinal villus, and crypt measurements to compare chickens colonized early or late in the rearing cycle to provide insights into the process and outcomes of Campylobacter colonization. Early colonization results in a transient growth rate reduction and pro-inflammatory response but persistent modification of the cecal microbiota. Late colonization produces pro-inflammatory responses with changes in the cecal microbiota that will endure in market-ready chickens.


Subject(s)
Campylobacter Infections/immunology , Campylobacter jejuni/isolation & purification , Cecum/microbiology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Poultry Diseases/immunology , Animals , Campylobacter Infections/microbiology , Campylobacter jejuni/immunology , Chemokines/metabolism , Chickens , Food Safety , Inflammation/immunology , Male , Poultry Diseases/microbiology , Th17 Cells/immunology
4.
Nucleic Acids Res ; 44(10): 4581-94, 2016 06 02.
Article in English | MEDLINE | ID: mdl-26786317

ABSTRACT

Phase-variable restriction-modification systems are a feature of a diverse range of bacterial species. Stochastic, reversible switches in expression of the methyltransferase produces variation in methylation of specific sequences. Phase-variable methylation by both Type I and Type III methyltransferases is associated with altered gene expression and phenotypic variation. One phase-variable gene of Campylobacter jejuni encodes a homologue of an unusual Type IIG restriction-modification system in which the endonuclease and methyltransferase are encoded by a single gene. Using both inhibition of restriction and PacBio-derived methylome analyses of mutants and phase-variants, the cj0031c allele in C. jejuni strain NCTC11168 was demonstrated to specifically methylate adenine in 5'CCCGA and 5'CCTGA sequences. Alterations in the levels of specific transcripts were detected using RNA-Seq in phase-variants and mutants of cj0031c but these changes did not correlate with observed differences in phenotypic behaviour. Alterations in restriction of phage growth were also associated with phase variation (PV) of cj0031c and correlated with presence of sites in the genomes of these phages. We conclude that PV of a Type IIG restriction-modification system causes changes in site-specific methylation patterns and gene expression patterns that may indirectly change adaptive traits.


Subject(s)
Campylobacter jejuni/genetics , Campylobacter jejuni/pathogenicity , DNA Methylation , Gene Expression Regulation, Bacterial , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Adenine , Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Biofilms , Caco-2 Cells/microbiology , Campylobacter jejuni/metabolism , Humans , Mutation , Phylogeny , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism
5.
Plasmid ; 76: 32-9, 2014 11.
Article in English | MEDLINE | ID: mdl-25175817

ABSTRACT

Salmonella enterica Serovar Typhimurium U288 is an emerging pathogen of pigs. The strain contains three plasmids of diverse origin that encode traits that are of concern for food security and safety, these include antibiotic resistant determinants, an array of functions that can modify cell physiology and permit genetic mobility. At 148,711 bp, pSTU288-1 appears to be a hybrid plasmid containing a conglomerate of genes found in pSLT of S. Typhimurium LT2, coupled with a mosaic of horizontally-acquired elements. Class I integron containing gene cassettes conferring resistance against clinically important antibiotics and compounds are present in pSTU288-1. A curious feature of the plasmid involves the deletion of two genes encoded in the Salmonella plasmid virulence operon (spvR and spvA) following the insertion of a tnpA IS26-like element coupled to a blaTEM gene. The spv operon is considered to be a major plasmid-encoded Salmonella virulence factor that is essential for the intracellular lifecycle. The loss of the positive regulator SpvR may impact on the pathogenesis of S. Typhimurium U288. A second 11,067 bp plasmid designated pSTU288-2 contains further antibiotic resistance determinants, as well as replication and mobilization genes. Finally, a small 4675 bp plasmid pSTU288-3 was identified containing mobilization genes and a pleD-like G-G-D/E-E-F conserved domain protein that modulate intracellular levels of cyclic di-GMP, and are associated with motile to sessile transitions in growth.


Subject(s)
Drug Resistance, Bacterial/genetics , Plasmids/genetics , Salmonella typhimurium/genetics , Conjugation, Genetic , Gene Transfer, Horizontal , Integrons , Plasmids/drug effects , Salmonella typhimurium/pathogenicity , Sequence Analysis, DNA
6.
Open Biol ; 4: 130200, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24671947

ABSTRACT

Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.


Subject(s)
Bacteriophages/physiology , Campylobacter jejuni/physiology , Campylobacter jejuni/virology , Animals , Antibodies, Neutralizing/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Biofilms , Campylobacter jejuni/growth & development , Chickens/microbiology , DNA, Viral/metabolism , Life Cycle Stages
7.
J Biotechnol ; 108(3): 227-41, 2004 Mar 18.
Article in English | MEDLINE | ID: mdl-15006424

ABSTRACT

Several extracellular feruloyl esterases were produced by the mesophilic fungus Talaromyces stipitatus when grown on selective carbon sources in liquid media. Type-A and Type-B feruloyl esterases, as defined by their substrate specificity against methyl hydroxycinnamates, were produced during growth on wheat bran and sugar beet pulp, respectively. In addition, Tal. stipitatus produced a new type of esterase (TsFaeC) during growth on sugar beet pulp with a broader spectrum of activity (Type-C) against the (hydroxy)cinnamate esters than those previously described. All three enzymes were purified and N-terminal amino acid sequences and internal peptide sequences determined. The TsFaeC sequences were used to amplify a gene fragment from Tal. stipitatus genomic DNA. The flanking sequences were identified with the aid of RACE-RTPCR, and a full-length clone constructed. The faeC gene is present as a single copy and contains a single intron. The complete cDNA fragment contains an ORF of 1590bp, faeC, which is predicted to encode a 530 amino acid pre-protein, including a 25-residue signal peptide, and to produce a mature protein of M(R) 55 340Da. There was no evidence for a carbohydrate-binding domain in TsFaeC.


Subject(s)
Carboxylic Ester Hydrolases/biosynthesis , Carboxylic Ester Hydrolases/chemistry , Talaromyces/enzymology , Amino Acid Sequence , Carboxylic Ester Hydrolases/analysis , Carboxylic Ester Hydrolases/classification , Enzyme Activation , Enzyme Stability , Hydrogen-Ion Concentration , Isoenzymes/chemistry , Isoenzymes/metabolism , Molecular Sequence Data , Molecular Weight , Substrate Specificity , Temperature
8.
Microbiology (Reading) ; 144 ( Pt 9): 2555-2561, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9782504

ABSTRACT

A 5 kb region upstream of katA at 82 degrees on the Bacillus subtilis chromosome contains five ORFs organized in an operon-like structure. Based on sequence similarity, three of the ORFs are likely to encode an ABC transport system (ssuBAC) and another to encode a monooxygenase (ssuD). The deduced amino acid sequence of the last ORF (ygaN) shows no similarity to any known protein. B. subtilis can utilize a range of aliphatic sulfonates such as alkanesulfonates, taurine, isethionate and sulfoacetate as a source of sulfur, but not when ssuA and ssuC are disrupted by insertion of a neomycin-resistance gene. Utilization of aliphatic sulfonates was not affected in a strain lacking 3'-phosphoadenosine 5'-phosphosulfate (PAPS) sulfotransferase, indicating that sulfate is not an intermediate in the assimilation of sulfonate-sulfur. Sulfate or cysteine prevented expression of beta-galactosidase from a transcriptional ssuD::lacZ fusion. It is proposed that ssuBACD encode a system for ATP-dependent transport of alkanesulfonates and an oxygenase required for their desulfonation.


Subject(s)
Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Genes, Bacterial , Sulfonic Acids/metabolism , Sulfur/metabolism , ATP-Binding Cassette Transporters/genetics , Amino Acid Sequence , Artificial Gene Fusion , Bacterial Proteins/genetics , Lac Operon , Molecular Sequence Data , Mutagenesis, Insertional , Open Reading Frames , Operon , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...