Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 91(5): 1049-1056, 2022 04.
Article in English | MEDLINE | ID: mdl-34230621

ABSTRACT

There is no consensus on the optimal pCO2 levels in the newborn. We reviewed the effects of hypercapnia and hypocapnia and existing carbon dioxide thresholds in neonates. A systematic review was conducted in accordance with the PRISMA statement and MOOSE guidelines. Two hundred and ninety-nine studies were screened and 37 studies included. Covidence online software was employed to streamline relevant articles. Hypocapnia was associated with predominantly neurological side effects while hypercapnia was linked with neurological, respiratory and gastrointestinal outcomes and Retinpathy of prematurity (ROP). Permissive hypercapnia did not decrease periventricular leukomalacia (PVL), ROP, hydrocephalus or air leaks. As safe pCO2 ranges were not explicitly concluded in the studies chosen, it was indirectly extrapolated with reference to pCO2 levels that were found to increase the risk of neonatal disease. Although PaCO2 ranges were reported from 2.6 to 8.7 kPa (19.5-64.3 mmHg) in both term and preterm infants, there are little data on the safety of these ranges. For permissive hypercapnia, parameters described for bronchopulmonary dysplasia (BPD; PaCO2 6.0-7.3 kPa: 45.0-54.8 mmHg) and congenital diaphragmatic hernia (CDH; PaCO2 ≤ 8.7 kPa: ≤65.3 mmHg) were identified. Contradictory findings on the effectiveness of permissive hypercapnia highlight the need for further data on appropriate CO2 parameters and correlation with outcomes. IMPACT: There is no consensus on the optimal pCO2 levels in the newborn. There is no consensus on the effectiveness of permissive hypercapnia in neonates. A safe range of pCO2 of 5-7 kPa was inferred following systematic review.


Subject(s)
Hypocapnia , Infant, Premature, Diseases , Carbon Dioxide , Humans , Hypercapnia , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/etiology , Respiration, Artificial/adverse effects
2.
Interface Focus ; 11(2): 20200033, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33633832

ABSTRACT

Carbon dioxide (CO2) is a fundamental physiological gas known to profoundly influence the behaviour and health of millions of species within the plant and animal kingdoms in particular. A recent Royal Society meeting on the topic of 'Carbon dioxide detection in biological systems' was extremely revealing in terms of the multitude of roles that different levels of CO2 play in influencing plants and animals alike. While outstanding research has been performed by leading researchers in the area of plant biology, neuronal sensing, cell signalling, gas transport, inflammation, lung function and clinical medicine, there is still much to be learned about CO2-dependent sensing and signalling. Notably, while several key signal transduction pathways and nodes of activity have been identified in plants and animals respectively, the precise wiring and sensitivity of these pathways to CO2 remains to be fully elucidated. In this article, we will give an overview of the literature relating to CO2-dependent signal transduction in mammalian systems. We will highlight the main signal transduction hubs through which CO2-dependent signalling is elicited with a view to better understanding the complex physiological response to CO2 in mammalian systems. The main topics of discussion in this article relate to how changes in CO2 influence cellular function through modulation of signal transduction networks influenced by pH, mitochondrial function, adenylate cyclase, calcium, transcriptional regulators, the adenosine monophosphate-activated protein kinase pathway and direct CO2-dependent protein modifications. While each of these topics will be discussed independently, there is evidence of significant cross-talk between these signal transduction pathways as they respond to changes in CO2. In considering these core hubs of CO2-dependent signal transduction, we hope to delineate common elements and identify areas in which future research could be best directed.

SELECTION OF CITATIONS
SEARCH DETAIL
...