Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Yearb Med Inform ; (1): 264­271, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830261

ABSTRACT

INTRODUCTION: Official recognition and certification for informatics professionals are essential aspects of workforce development. OBJECTIVE: To describe the history, pathways, and nuances of certification in nursing informatics across the globe; compare and contrast those with board certification in clinical informatics for physicians. METHODS: (1) A review of the representative literature on informatics certification and related competencies for nurses and physicians, and relevant websites for nursing informatics associations and societies worldwide; (2) similarities and differences between certification processes for nurses and physicians, and (3) perspectives on roles for nursing informatics professionals in healthcare Results: The literature search for 'nursing informatics certification' yielded few results in PubMed; Google Scholar yielded a large number of citations that extended to magazines and other non-peer reviewed sources. Worldwide, there are several nursing informatics associations, societies, and workgroups dedicated to nursing informatics associated with medical/health informatics societies. A formal certification program for nursing informatics appears to be available only in the United States. This certification was established in 1992, in concert with the formation and definition of nursing informatics as a specialty practice of nursing by the American Nurses Association. Although informatics is inherently interprofessional, certification pathways for nurses and physicians have developed separately, following long-standing professional structures, training, and pathways aligned with clinical licensure and direct patient care. There is substantial similarity with regard to the skills and competencies required for nurses and physicians to obtain informatics certification in their respective fields. Nurses may apply for and complete a certification examination if they have experience in the field, regardless of formal training. Increasing numbers of informatics nurses are pursuing certification. CONCLUSIONS: The pathway to certification is clear and wellestablished for U.S. based informatics nurses. The motivation for obtaining and maintaining nursing informatics certification appears to be stronger for nurses who do not have an advanced informatics degree. The primary difference between nursing and physician certification pathways relates to the requirement of formal training and level of informatics practice. Nurse informatics certification requires no formal education or training and verifies knowledge and skill at a more basic level. Physician informatics certification validates informatics knowledge and skill at a more advanced level; currently this requires documentation of practice and experience in clinical informatics and in the future will require successful completion of an accredited two-year fellowship in clinical informatics. For the profession of nursing, a graduate degree in nursing or biomedical informatics validates specialty knowledge at a level more comparable to the physician certification. As the field of informatics and its professional organization structures mature, a common certification pathway may be appropriate. Nurses, physicians, and other healthcare professionals with informatics training and certification are needed to contribute their expertise in clinical operations, teaching, research, and executive leadership.


Subject(s)
Certification , Nursing Informatics/standards , Humans , Motivation , Societies, Nursing , Specialty Boards
2.
Clin Toxicol (Phila) ; 50(8): 781-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22889059

ABSTRACT

CONTEXT: High volume surges in health care are uncommon and unpredictable events. Their impact on health system performance and capacity is difficult to study. OBJECTIVES: To identify time periods that exhibited very busy conditions at a poison control center and to determine whether cases and communication during high volume call periods are different from cases during low volume periods. METHODS: Call data from a US poison control center over twelve consecutive months was collected via a call logger and an electronic case database (Toxicall®).Variables evaluated for high call volume conditions were: (1) call duration; (2) number of cases; and (3) number of calls per staff member per 30 minute period. Statistical analyses identified peak periods as busier than 99% of all other 30 minute time periods and low volume periods as slower than 70% of all other 30 minute periods. Case and communication characteristics of high volume and low volume calls were compared using logistic regression. RESULTS: A total of 65,364 incoming calls occurred over 12 months. One hundred high call volume and 4885 low call volume 30 minute periods were identified. High volume periods were more common between 1500 and 2300 hours and during the winter months. Coded verbal communication data were evaluated for 42 high volume and 296 low volume calls. The mean (standard deviation) call length of these calls during high volume and low volume periods was 3 minutes 27 seconds (1 minute 46 seconds) and 3 minutes 57 seconds (2 minutes 11 seconds), respectively. Regression analyses revealed a trend for fewer overall verbal statements and fewer staff questions during peak periods, but no other significant differences for staff-caller communication behaviors were found. CONCLUSION: Peak activity for poison center call volume can be identified by statistical modeling. Calls during high volume periods were similar to low volume calls. Communication was more concise yet staff was able to maintain a good rapport with callers during busy call periods. This approach allows evaluation of poison exposure call characteristics and communication during high volume periods.


Subject(s)
Communication , Models, Statistical , Poison Control Centers/statistics & numerical data , Telephone/statistics & numerical data , Databases, Factual , Humans , Logistic Models , Poison Control Centers/standards , Regression Analysis , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...