Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1929: 379-395, 2019.
Article in English | MEDLINE | ID: mdl-30710286

ABSTRACT

Human S100A7 (psoriasin) is a metal-chelating host-defense protein expressed by epithelial cells. S100A7 possesses two Cys residues that generate two redox isoforms of the protein. In the oxidized form (S100A7ox), Cys47 and Cys96 form an intramolecular disulfide bond, whereas these residues exist as free thiols in the reduced form (S100A7red). In this chapter, we provide a step-by-step protocol for the purification of S100A7ox and S100A7red that affords each protein in high yield and purity. In this procedure, S100A7 is expressed in Escherichia coli BL21(DE3), and the homodimer is obtained following ammonium sulfate precipitation, folding, and column chromatography. Treatment of S100A7 with 1,4-dithiothreitol (DTT) affords S100A7red. A Cu(II)-catalyzed oxidation reaction is employed to obtain S100A7ox. A RP-HPLC method that allows for baseline separation of S100A7ox and S100A7red is provided, as well as a biochemical Zn(II)-binding assay that can be employed to evaluate the functional integrity of S100A7.


Subject(s)
Cysteine/metabolism , S100 Calcium Binding Protein A7/chemistry , S100 Calcium Binding Protein A7/genetics , Zinc/metabolism , Chromatography, High Pressure Liquid , Copper/chemistry , Disulfides/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Humans , Oxidation-Reduction , S100 Calcium Binding Protein A7/metabolism
2.
Biochemistry ; 57(11): 1673-1680, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29381858

ABSTRACT

The human innate immune system launches a metal-withholding response to starve invading microbial pathogens of essential metal nutrients. Zn(II)-sequestering proteins of the human S100 family contribute to this process and include calprotectin (CP, S100A8/S100A9 oligomer, calgranulin A/B oligomer), S100A12 (calgranulin C), and S100A7 (psoriasin). This Perspective highlights recent advances in the Zn(II) coordination chemistry of these three proteins, as well as select studies that evaluate Zn(II) sequestration as an antimicrobial mechanism.


Subject(s)
S100 Proteins/metabolism , Zinc/metabolism , Anti-Bacterial Agents/metabolism , Biopolymers/chemistry , Biopolymers/metabolism , Crystallography, X-Ray , Humans , Protein Conformation , S100 Proteins/chemistry
3.
J Am Chem Soc ; 140(7): 2413-2416, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29334734

ABSTRACT

We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the "A12-resin", that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology.


Subject(s)
S100A12 Protein/chemistry , Zinc/isolation & purification , Cells, Cultured , HEK293 Cells , Humans , Ions/chemistry , Ions/isolation & purification , Ions/metabolism , S100A12 Protein/metabolism , Zinc/chemistry , Zinc/metabolism
4.
Biochemistry ; 56(43): 5726-5738, 2017 10 31.
Article in English | MEDLINE | ID: mdl-28976190

ABSTRACT

Human S100A7 (psoriasin) is a metal-chelating protein expressed by epithelial cells. It is a 22-kDa homodimer with two EF-hand domains per subunit and two transition-metal-binding His3Asp sites at the dimer interface. Each subunit contains two cysteine residues that can exist as free thiols (S100A7red) or as an intramolecular disulfide bond (S100A7ox). Herein, we examine the disulfide bond redox behavior, the Zn(II) binding properties, and the antibacterial activity of S100A7, as well as the effect of Ca(II) ions on these properties. In agreement with prior work [Hein, K. Z., et al. (2013) Proc. Natl. Acad. Sci. U. S. A. 112, 13039-13044], we show that apo S100A7ox is a substrate for the mammalian thioredoxin system; however, negligible reduction of the disulfide bond is observed for Ca(II)- and Zn(II)-bound S100A7ox. Furthermore, metal binding depresses the midpoint potential of the disulfide bond. S100A7ox and S100A7red each coordinate 2 equiv of Zn(II) with subnanomolar affinity in the absence and presence of Ca(II) ions, and the cysteine thiolates in S100A7red do not form a third high-affinity Zn(II) site. These results refute a prior model implicating the Cys thiolates of S100A7red in high-affinity Zn(II) binding [Hein, K. Z., et al. (2013) Proc. Natl. Acad. Sci. U. S. A. 112, 13039-13044]. S100A7ox and the disulfide-null variants show comparable Zn(II)-depletion profiles; however, only S100A7ox exhibits antibacterial activity against select bacterial species. Metal substitution experiments suggest that the disulfide bonds in S100A7 may enhance metal sequestration by the His3Asp sites and thereby confer growth inhibitory properties to S100A7ox.


Subject(s)
Anti-Bacterial Agents/chemistry , Chelating Agents/chemistry , Disulfides/chemistry , Protein Multimerization , S100 Proteins/chemistry , Zinc/chemistry , Anti-Bacterial Agents/metabolism , Chelating Agents/metabolism , Humans , Protein Binding , S100 Calcium Binding Protein A7 , S100 Proteins/genetics , S100 Proteins/metabolism , Zinc/metabolism
5.
J Am Chem Soc ; 138(37): 12243-51, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27541598

ABSTRACT

Human calprotectin (CP, S100A8/S100A9 oligomer, MRP-8/MRP-14 oligomer) is an abundant host-defense protein that is involved in the metal-withholding innate immune response. CP coordinates a variety of divalent first-row transition metal ions, which is implicated in its antimicrobial function, and its ability to sequester nutrient Zn(II) ions from microbial pathogens has been recognized for over two decades. CP has two distinct transition-metal-binding sites formed at the S100A8/S100A9 dimer interface, including a histidine-rich site composed of S100A8 residues His17 and His27 and S100A9 residues His91 and His95. In this study, we report that CP binds Zn(II) at this site using a hexahistidine motif, completed by His103 and His105 of the S100A9 C-terminal tail and previously identified as the high-affinity Mn(II) and Fe(II) coordination site. Zn(II) binding at this unique site shields the S100A9 C-terminal tail from proteolytic degradation by proteinase K. X-ray absorption spectroscopy and Zn(II) competition titrations support the formation of a Zn(II)-His6 motif. Microbial growth studies indicate that the hexahistidine motif is important for preventing microbial Zn(II) acquisition from CP by the probiotic Lactobacillus plantarum and the opportunistic human pathogen Candida albicans. The Zn(II)-His6 site of CP expands the known biological coordination chemistry of Zn(II) and provides new insight into how the human innate immune system starves microbes of essential metal nutrients.


Subject(s)
Histidine/chemistry , Leukocyte L1 Antigen Complex/chemistry , Oligopeptides/chemistry , Zinc/chemistry , Humans , Lactobacillus plantarum , Models, Molecular , Protein Binding , Protein Conformation
6.
Chem Sci ; 7(2): 1338-1348, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26913170

ABSTRACT

Human S100A12 is a host-defense protein expressed and released by neutrophils that contributes to innate immunity. Apo S100A12 is a 21-kDa antiparallel homodimer that harbors two Ca(II)-binding EF-hand domains per subunit and exhibits two His3Asp motifs for chelating transition metal ions at the homodimer interface. In this work, we present results from metal-binding studies and microbiology assays designed to ascertain whether Ca(II) ions modulate the Zn(II)-binding properties of S100A12 and further evaluate the antimicrobial properties of this protein. Our metal depletion studies reveal that Ca(II) ions enhance the ability of S100A12 to sequester Zn(II) from microbial growth media. We report that human S100A12 has antifungal activity against Candida albicans, C. krusei, C. glabrata and C. tropicalis, all of which cause human disease. This antifungal activity is Ca(II)-dependent and requires the His3Asp metal-binding sites. We expand upon prior studies of the antibacterial activity of S100A12 and report Ca(II)-dependent and strain-selective behavior. S100A12 exhibited in vitro growth inhibitory activity against Listeria monocytogenes. In contrast, S100A12 had negligible effect on the growth of Escherichia coli K-12 and Pseudomonas aeruginosa PAO1. Loss of functional ZnuABC, a high-affinity Zn(II) import system, increased the susceptibility of E. coli and P. aeruginosa to S100A12, indicating that S100A12 deprives these mutant strains of Zn(II). To evaluate the Zn(II)-binding sites of S100A12 in solution, we present studies using Co(II) as a spectroscopic probe and chromophoric small-molecule chelators in Zn(II) competition titrations. We confirm that S100A12 binds Zn(II) with a 2:1 stoichiometry, and our data indicate sub-nanomolar affinity binding. Taken together, these data support a model whereby S100A12 uses Ca(II) ions to tune its Zn(II)-chelating properties and antimicrobial activity.

7.
J Am Chem Soc ; 135(2): 775-87, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23276281

ABSTRACT

Calprotectin (CP) is a transition metal-chelating antimicrobial protein of the calcium-binding S100 family that is produced and released by neutrophils. It inhibits the growth of various pathogenic microorganisms by sequestering the transition metal ions manganese and zinc. In this work, we investigate the manganese-binding properties of CP. We demonstrate that the unusual His(4) motif (site 2) formed at the S100A8/S100A9 dimer interface is the site of high-affinity Mn(II) coordination. We identify a low-temperature Mn(II) spectroscopic signal for this site consistent with an octahedral Mn(II) coordination sphere with simulated zero-field splitting parameters D = 270 MHz and E/D = 0.30 (E = 81 MHz). This analysis, combined with studies of mutant proteins, suggests that four histidine residues (H17 and H27 of S100A8; H91 and H95 of S100A9) coordinate Mn(II) in addition to two as-yet unidentified ligands. The His(3)Asp motif (site 1), which is also formed at the S100A8/S100A9 dimer interface, does not provide a high-affinity Mn(II) binding site. Calcium binding to the EF-hand domains of CP increases the Mn(II) affinity of the His(4) site from the low-micromolar to the mid-nanomolar range. Metal-ion selectivity studies demonstrate that CP prefers to coordinate Zn(II) over Mn(II). Nevertheless, the specificity of Mn(II) for the His(4) site provides CP with the propensity to form mixed Zn:Mn:CP complexes where one Zn(II) ion occupies site 1 and one Mn(II) ion occupies site 2. These studies support the notion that CP responds to physiological calcium ion gradients to become a high-affinity transition metal ion chelator in the extracellular space where it inhibits microbial growth.


Subject(s)
Histidine/chemistry , Leukocyte L1 Antigen Complex/chemistry , Manganese/chemistry , Amino Acid Sequence , Binding Sites , Calcium/chemistry , Dimerization , Humans , Leukocyte L1 Antigen Complex/metabolism , Manganese/metabolism , Models, Molecular , Molecular Sequence Data , Sequence Alignment
8.
Inorg Chem ; 50(10): 4428-36, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21506587

ABSTRACT

The M(CO)(4) fragment can be assigned to be isolobal with both CH(3)(+) and CH(2). In order to investigate this ambiguous isolobal assignment, we report calculations on compounds of the type M(CO)(4)L(n), where M is Fe (n = 0), Mn (n = -1), and Co (n = +1) and L is an η(2) ligand with a π bond, generally an alkene. The L's are varied in electron-withdrawing ability, and patterns in computed structural parameters are investigated. We report that the equatorial OC-M-CO angle is sensitive to the electron-withdrawing ability of the alkene just as the isolobal prediction suggests. Other structural parameters that vary monotonically with electron-withdrawing ability of the alkene are the "bending back" of the alkene, the metal-ligand bond distances, and carbon-oxygen bond distances. Changing the metal from neutral Fe to a negatively charged Mn or positively charged Co has the result of increasing and decreasing, respectively, the OC-M-CO angle. Several compounds of Ni(CO)(3)L are also investigated as a further example of the ability of the isolobal concept to yield chemically useful information.

SELECTION OF CITATIONS
SEARCH DETAIL
...