Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 92(5): 053550, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243342

ABSTRACT

Power-flow studies on the 30-MA, 100-ns Z facility at Sandia National Laboratories have shown that plasmas in the facility's magnetically insulated transmission lines (MITLs) and double post-hole convolute can result in a loss of current delivered to the load. To study power-flow physics on the 1-MA, 100-ns MAIZE facility at the University of Michigan, planar MITL loads and planar post-hole convolute loads have been developed that extend into the lines of sight for various imaging diagnostics on MAIZE. These loads use 3D-printed dielectric support structures lined with thin foils of either aluminum or stainless steel. The metal foils serve as the current-carrying power-flow surfaces, which generate plasma during the current pulse. The foil thickness (50 µm) and widths (11.5-16 mm) are selected to ensure a sufficient linear current density (0.5-0.7 MA/cm) for plasma formation. Laser backlighting (532 nm) and visible-light self-emission imaging capture the overall plasma evolution in the anode-cathode gaps, including the gap closure velocities (1-4 cm/µs).

2.
Rev Sci Instrum ; 89(10): 10D123, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399676

ABSTRACT

In the self-magnetic-pinch diode, the electron beam, produced through explosive field emission, focuses on the anode surface due to its own magnetic field. This process results in dense plasma formation on the anode surface, consisting primarily of hydrocarbons. Direct measurements of the beam's current profile are necessary in order to understand the pinch dynamics and to determine x-ray source sizes, which should be minimized in radiographic applications. In this paper, the analysis of the C IV doublet (580.1 and 581.2 nm) line shapes will be discussed. The technique yields estimates of the electron density and electron temperature profiles, and the method can be highly beneficial in providing the current density distribution in such diodes.

3.
Rev Sci Instrum ; 87(6): 063906, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27370469

ABSTRACT

The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called "bricks," that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.-Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel "current-adder" architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L2 norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.

4.
Phys Rev Lett ; 113(15): 155003, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25375714

ABSTRACT

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 µm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2).

5.
Phys Rev Lett ; 113(15): 155004, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25375715

ABSTRACT

Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

6.
Rev Sci Instrum ; 85(8): 083501, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173263

ABSTRACT

Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources.

7.
Article in English | MEDLINE | ID: mdl-25615200

ABSTRACT

A compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources is experimentally demonstrated in a configuration with a central target and tailored shine shields at a 1.7-MA Zebra generator. Driving in parallel two magnetically decoupled compact double-planar-wire Z pinches has demonstrated the generation of synchronized x-ray bursts that correlated well in time with x-ray emission from a central reemission target. Good agreement between simulated and measured hohlraum radiation temperature of the central target is shown. The advantages of compact hohlraum design applications for multi-MA facilities are discussed.

8.
Rev Sci Instrum ; 85(12): 124701, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25554308

ABSTRACT

Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

9.
Phys Rev Lett ; 111(3): 035001, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909333

ABSTRACT

Detailed spectroscopic diagnostics of the stagnating plasma in two disparate z pinches allow, for the first time, the examination of the plasma properties within a 1D shock wave picture, demonstrating a good agreement with this picture. The conclusion is that for a wide range of imploding-plasma masses and current amplitudes, in experiments optimizing non-Planckian hard radiation yields, contrary to previous descriptions the stagnating plasma pressure is balanced by the implosion pressure, and the radiation energy is provided by the imploding-plasma kinetic energy, rather than by the magnetic-field pressure and magnetic-field-energy dissipation, respectively.

10.
Rev Sci Instrum ; 84(6): 063504, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822342

ABSTRACT

Tests are ongoing to conduct ~20 MA z-pinch implosions on the Z accelerator at Sandia National Laboratory using Ar, Kr, and D2 gas puffs as the imploding loads. The relatively high cost of operations on a machine of this scale imposes stringent requirements on the functionality, reliability, and safety of gas puff hardware. Here we describe the development of a prototype gas puff system including the multiple-shell nozzles, electromagnetic drivers for each nozzle's valve, a UV pre-ionizer, and an inductive isolator to isolate the ~2.4 MV machine voltage pulse present at the gas load from the necessary electrical and fluid connections made to the puff system from outside the Z vacuum chamber. This paper shows how the assembly couples to the overall Z system and presents data taken to validate the functionality of the overall system.

11.
Phys Rev Lett ; 111(23): 235005, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476283

ABSTRACT

Novel experimental data are reported that reveal helical instability formation on imploding z-pinch liners that are premagnetized with an axial field. Such instabilities differ dramatically from the mostly azimuthally symmetric instabilities that form on unmagnetized liners. The helical structure persists at nearly constant pitch as the liner implodes. This is surprising since, at the liner surface, the azimuthal drive field presumably dwarfs the axial field for all but the earliest stages of the experiment. These fundamentally 3D results provide a unique and challenging test for 3D-magnetohydrodynamics simulations.

12.
Phys Rev Lett ; 109(15): 155002, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102317

ABSTRACT

Using solid, machined X-pinch targets driven by currents rising from 0 to 5-6 MA in 60 ns, we observed bright spots of 5-9-keV continuum radiation from 5±2-µm diameter regions. The >6-keV radiation is emitted in about 0.4 ns, and the bright spots are roughly 75 times brighter than the bright spots measured at 1 MA. A total x-ray power of 10 TW peak and yields of 165±20 kJ were emitted from a 3-mm height. The 3-5-keV continuum radiation had a 50-90-GW peak power and 0.15-0.35-kJ yield. The continuum is plausibly from a 1275±75-eV blackbody or alternatively from a 3500±500-eV bremsstrahlung source.

13.
Phys Rev Lett ; 109(13): 135004, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23030097

ABSTRACT

The implosions of initially solid beryllium liners (tubes) have been imaged with penetrating radiography through to stagnation. These novel radiographic data reveal a high degree of azimuthal correlation in the evolving magneto-Rayleigh-Taylor structure at times just prior to (and during) stagnation, providing stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities. To emphasize this point, comparisons to 2D and 3D radiation magnetohydrodynamics simulations are also presented. Both agreement and substantial disagreement have been found, depending on how the liner's initial outer surface finish was modeled. The various models tested, and the physical implications of these models are discussed. These comparisons exemplify the importance of the experimental data obtained.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056408, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22181529

ABSTRACT

The observation of Doppler splitting in K-shell x-ray lines emitted from optically thin dopants is used to infer implosion velocities of up to 70 cm/µs in wire-array and gas-puff Z pinches at drive currents of 15-20 MA. These data can benchmark numerical implosion models, which produce reasonable agreement with the measured velocity in the emitting region. Doppler splitting is obscured in lines with strong opacity, but red-shifted absorption produced by the cooler halo of material backlit by the hot core assembling on axis can be used to diagnose velocity in the trailing mass.


Subject(s)
Physics/methods , Absorption , Algorithms , Equipment Design , Magnetics , Motion , Spectrophotometry/methods , Time Factors , Water/chemistry , X-Rays
15.
Phys Rev Lett ; 107(10): 105001, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21981506

ABSTRACT

The time history of the local ion kinetic energy in a stagnating plasma was determined from Doppler-dominated line shapes. Using independent determination of the plasma properties for the same plasma region, the data allowed for inferring the time-dependent ion temperature, and for discriminating the temperature from the total ion kinetic energy. It is found that throughout most of the stagnation period the ion thermal energy constitutes a small fraction of the total ion kinetic energy; the latter is dominated by hydrodynamic motion. Both the ion hydrodynamic and thermal energies are observed to decrease to the electron thermal energy by the end of the stagnation period. It is confirmed that the total ion kinetic energy available at the stagnating plasma and the total radiation emitted are in balance, as obtained in our previous experiment. The dissipation time of the hydrodynamic energy thus appears to determine the duration (and power) of the K emission.

16.
Rev Sci Instrum ; 82(6): 063113, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21721680

ABSTRACT

We describe a pair of time-integrated transmission spectrometers that are designed to survey 7-28 keV (1.9 to 0.43 Å) x-ray photons produced by experiments on the Sandia Z pulsed power facility. Each spectrometer uses a quartz 10-11 crystal in a Cauchois geometry with a slit to provide spatial resolution along one dimension. The spectrometers are located in the harsh environment of the Z vacuum chamber, which necessitates that their design be compact and rugged. Example data from calibration tests and Z experiments are shown that illustrate the utility of the instruments.

17.
Phys Rev Lett ; 104(12): 125001, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20366539

ABSTRACT

An indirect drive configuration is proposed wherein multiple compact Z-pinch x-ray sources surround a secondary hohlraum. Planar compact wire arrays allow reduced primary hohlraum surface area compared to cylindrical loads. Implosions of planar arrays are studied at up to 15 TW x-ray power on Saturn with radiated yields exceeding the calculated kinetic energy, suggesting other heating paths. X-ray power and yield scaling studied from 1-6 MA motivates viewfactor modeling of four 6-MA planar arrays producing 90 eV radiation temperature in a secondary hohlraum.

18.
Phys Rev Lett ; 105(18): 185001, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21231110

ABSTRACT

The first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast (∼100 ns) Z-pinch plasmas are reported. Sinusoidal perturbations on the surface of an initially solid Al tube (liner) with wavelengths of 25-400 µm were used to seed the instability. Radiographs with 15 µm resolution captured the evolution of the outer liner surface. Comparisons with numerical radiation magnetohydrodynamic simulations show remarkably good agreement down to 50 µm wavelengths.

19.
Phys Rev Lett ; 102(2): 025005, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19257285

ABSTRACT

X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator.

20.
Phys Rev Lett ; 100(14): 145002, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18518042

ABSTRACT

Short-implosion-time 20-mm diameter, 300-wire tungsten arrays maintain high peak x-ray powers despite a reduction in peak current from 19 to 13 MA. The main radiation pulse on tests with a 1-mm on-axis rod may be explained by the observable j x B work done during the implosion, but bare-axis tests require sub-mm convergence of the magnetic field not seen except perhaps in >1 keV emission. The data include the first measurement of the imploding mass density profile of a wire-array Z pinch that further constrains simulation models.

SELECTION OF CITATIONS
SEARCH DETAIL
...