Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 189: 106596, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395317

ABSTRACT

Botulism is a severe disease caused by potent botulinum neurotoxins (BoNTs) produced by Clostridium botulinum. This disease is associated with high-lethality outbreaks in cattle, which have been linked to the ingestion of preformed BoNT serotypes C and D, emphasizing the need for effective vaccines. The potency of current commercial toxoids (formaldehyde-inactivated BoNTs) is assured through tests in guinea pigs according to government regulatory guidelines, but their short-term immunity raises concerns. Recombinant vaccines containing the receptor-binding domain have demonstrated potential for eliciting robust protective immunity. Previous studies have demonstrated the safety and effectiveness of recombinant E. coli bacterin, eliciting high titers of neutralizing antibodies against C. botulinum and C. perfringens in target animal species. In this study, neutralizing antibody titers in cattle and the long-term immune response against BoNT/C and D were used to assess the efficacy of the oil-based adjuvant compared with that of the aluminum hydroxide adjuvant in cattle. The vaccine formulation containing Montanide™ ISA 50 yielded significantly higher titers of neutralizing antibody against BoNT/C and D (8.64 IU/mL and 9.6 IU/mL, respectively) and induced an immune response that lasted longer than the response induced by aluminum, extending between 30 and 60 days. This approach represents a straightforward, cost-effective strategy for recombinant E. coli bacterin, enhancing both the magnitude and duration of the immune response to botulism.


Subject(s)
Botulinum Toxins , Botulism , Clostridium botulinum , Cattle , Animals , Guinea Pigs , Botulism/prevention & control , Botulism/veterinary , Aluminum Hydroxide , Escherichia coli/genetics , Bacterial Vaccines/genetics , Botulinum Toxins/genetics , Clostridium botulinum/genetics , Adjuvants, Immunologic , Antibodies, Neutralizing , Immunity , Antibodies, Bacterial
2.
J Food Prot ; 85(4): 591-596, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34995347

ABSTRACT

ABSTRACT: The goals of this study were to evaluate the persistence and the virulence potential of Listeria monocytogenes isolated from beef carcasses obtained in processing facilities in the southern region of Rio Grande do Sul, Brazil, based on pulsed-field gel electrophoresis (PFGE), invasion ability in human colorectal carcinoma cells (HCT-116), internalin A (InlA) expression by Western blot, and identification of mutation points in inlA. PFGE profiles demonstrated that L. monocytogenes isolates were grouped based on their previously identified lineages and serogroups (lineage I: serogroup IIb, n = 2, and serogroup IVb, n = 5; lineage II: serogroup IIc, n = 5). Isolates with indistinguishable genetic profiles through this method were obtained from different slaughterhouses and sampling steps, with as much as a 3-year interval. Seven isolates showed high invasion ability (2.4 to 7.4%; lineage I, n = 6, and lineage II, n = 1) in HCT and expressed InlA. Five isolates showed low cell invasion ability (0.6 to 1.4%; lineage I, n = 1, and lineage II, n = 4) and did not express InlA, and two of them (lineage II, serogroup IIc) presented mutations in inlA that led to premature stop codon type 19 at position 326 (GAA → TAA). The results demonstrated that most L. monocytogenes isolates from lineage I expressed InlA and were the most invasive in HCT, indicating their high virulence potential, whereas most isolates from lineage II showed attenuated invasion because of nonexpression of InlA or the presence of premature stop codon type 19 in inlA. The obtained results demonstrated that L. monocytogenes with indistinguishable PFGE profiles can persist or be reintroduced in beef processing facilities in the studied region and that differences in their virulence potential are based on their lineages and serogroups.


Subject(s)
Listeria monocytogenes , Listeriosis , Animals , Bacterial Proteins/genetics , Brazil , Cattle , Food Microbiology , Genetic Profile , Humans , Listeria monocytogenes/genetics
3.
Vaccine ; 38(11): 2519-2526, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32037222

ABSTRACT

Botulism is a paralytic disease caused by the intoxication of neurotoxins produced by Clostridium botulinum. Among the seven immunologically distinct serotypes of neurotoxins (BoNTs A - G), serotypes C and D, or a chimeric fusion termed C/D or D/C, are responsible for animal botulism. The most effective way to prevent botulism in cattle is through vaccination; however, the commercially available vaccines produced by detoxification of native neurotoxins are time-consuming and hazardous. To overcome these drawbacks, a non-toxic recombinant vaccine was developed as an alternative. In this study, the recombinant protein vaccine was produced using an Escherichia coli cell-based system. The formaldehyde-inactivated E. coli is able to induce 7.45 ± 1.77 and 6.6 ± 1.28 IU/mL neutralizing mean titers against BoNTs C and D in cattle, respectively, determined by mouse neutralization bioassay, and was deemed protective by the Brazilian legislation. Moreover, when the levels of anti-BoNT/C and D were compared with those achieved by the recombinant purified vaccines, no significant statistical difference was observed. Cattle vaccinated with the commercial vaccine developed 1.33 and 3.33 IU/mL neutralizing mean titers against BoNT serotypes C and D, respectively. To the best of our knowledge, this study is the first report on recombinant E. coli bacterin vaccine against botulism. The vaccine was safe and effective in generating protective antibodies and, thus, represents an industry-friendly alternative for the prevention of cattle botulism.


Subject(s)
Bacterial Vaccines/immunology , Botulinum Toxins/immunology , Botulism/veterinary , Cattle Diseases/prevention & control , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Botulism/prevention & control , Brazil , Cattle , Cattle Diseases/microbiology , Clostridium botulinum , Escherichia coli , Mice , Neutralization Tests , Recombinant Proteins/immunology , Vaccines, Synthetic
4.
Toxins (Basel) ; 10(10)2018 09 20.
Article in English | MEDLINE | ID: mdl-30241350

ABSTRACT

Botulism is a potentially fatal intoxication caused by botulinum neurotoxins (BoNTs) produced mainly by Clostridium botulinum. Vaccination against BoNT serotypes C and D is the main procedure to control cattle botulism. Current vaccines contain formaldehyde-inactivated native BoNTs, which have a time-consuming production process and pose safety risks. The development of non-toxic recombinant vaccines has helped to overcome these limitations. This study aims to evaluate the humoral immune response generated by cattle immunized with non-purified recombinant fragments of BoNTs C and D. Cattle were vaccinated in a two-dose scheme with 100, 200 and 400 µg of each antigen, with serum sampling on days 0, 56, 120, and 180 after vaccination. Animals who received either 200 or 400 µg of both antigens induced titers higher than the minimum required by the Brazilian ministry of Agriculture, Livestock and Food Supply and achieved 100% (8/8) seroconversion rate. Animals vaccinated with commercial toxoid vaccine had only a 75% (6/8) seroconversion rate for both toxins. Animals that received doses containing 400 µg of recombinant protein were the only ones to maintain titers above the required level up until day 120 post-vaccination, and to achieve 100% (8/8) seroconversion for both toxins. In conclusion, 400 µg the recombinant Escherichia coli cell lysates supernatant was demonstrated to be an affordable means of producing an effective and safe botulism vaccine for cattle.


Subject(s)
Bacterial Vaccines/pharmacology , Botulinum Toxins/immunology , Botulism/prevention & control , Cattle Diseases/prevention & control , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Cattle , Immunity, Humoral/drug effects , Vaccines, Synthetic/pharmacology
5.
Toxins (Basel) ; 9(10)2017 09 22.
Article in English | MEDLINE | ID: mdl-28937601

ABSTRACT

Botulism is a fatal intoxication caused by botulinum neurotoxins (BoNTs), which are mainly produced by Clostridium botulinum and characterized by flaccid paralysis. The BoNTs C and D are the main serotypes responsible for botulism in animals, including buffaloes. Botulism is one of the leading causes of death in adult ruminants in Brazil due to the high mortality rates, even though botulism in buffaloes is poorly reported and does not reflect the real economic impact of this disease in Brazilian herds. Vaccination is reported as the most important prophylactic measure for botulism control, although there are no specific vaccines commercially available for buffaloes in Brazil. This study aimed to evaluate the humoral immune response of buffalo groups vaccinated with three different concentrations of recombinant proteins (100, 200, and 400 µg) against BoNTs serotypes C and D as well as to compare the groups to each other and with a group vaccinated with a bivalent commercial toxoid. The recombinant vaccine with a concentration of 400 µg of proteins induced the highest titers among the tested vaccines and was proven to be the best choice among the formulations evaluated and should be considered as a potential vaccine against botulism in buffalo.


Subject(s)
Bacterial Vaccines/immunology , Botulinum Toxins/immunology , Botulism/veterinary , Buffaloes/immunology , Immunity, Humoral , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Botulism/prevention & control , Buffaloes/microbiology , Female , Male , Recombinant Proteins/immunology , Serogroup , Vaccines, Synthetic/immunology
7.
Vaccine ; 32(2): 214-6, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24252701

ABSTRACT

Cattle botulism is a fatal intoxication caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum serotypes C and D resulting in economic losses. Vaccination is the most effective way to control botulism. However, the commercially available vaccines are difficult and hazardous to produce. Neutralizing antibodies against the C-terminal fragment of the BoNT heavy chain (HC) are known to protect against lethal doses of BoNTs. We report the vaccination of cattle with a previously tested recombinant chimera consisting of Escherichia coli heat-labile enterotoxin B subunit and the HC of BoNTs C and D. Vaccinated animals produced neutralizing antibodies against serotypes C and D averaging 5±0 and 6.14±1.06IU/mL, respectively. For BoNT D, the titers were greater than those measured for the commercial vaccine, which induced titers of 5±0 and 2.85±1.35 against the respective serotypes, suggesting that this chimera is effective against cattle botulism.


Subject(s)
Bacterial Vaccines/therapeutic use , Botulinum Toxins/immunology , Botulism/veterinary , Cattle/immunology , Toxoids/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Bacterial Toxins/immunology , Botulism/prevention & control , Clostridium botulinum , Enterotoxins/immunology , Escherichia coli Proteins/immunology , Male , Recombinant Proteins/immunology , Vaccination/veterinary
8.
Vaccine ; 31(38): 4152-5, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23845812

ABSTRACT

Due to the increasingly restricted use of antimicrobials in animal production systems, the prevention and control of Clostridium perfringens type A- and C-induced diarrhea in piglets should be based on passive immunization via the prepartum vaccination of sows. Given the current obstacles in the production of conventional clostridial vaccines, the use of recombinant proteins has been considered to represent a promising alternative. In the present study, the neutralizing antibody response of immunized sows and their litters to a bivalent vaccine containing the C. perfringens recombinant toxoids alpha (rTA) and beta (rTB) produced in Escherichia coli was assessed. Rabbits (n=8) and pregnant sows (n=7) were immunized with 200µg of each recombinant antigen using Al(OH)3 as adjuvant. The alpha and beta antitoxin titer detected in the rabbits' serum pool was 9.6 and 20.4IU/mL, respectively. The mean alpha and beta antitoxin titers in the sows' sera were 6.0±0.9IU/mL and 14.5±2.2IU/mL, and the corresponding individual coefficients of variation (CV) were 16.04% and 14.91%, respectively. The mean alpha and beta antitoxin titers in the litters' serum pools were 4.2±0.4IU/mL and 10.9±1.7IU/mL, and the CV between litters was 9.23% and 9.85%, respectively. The results showed that the rTA and rTB proteins produced and tested in the present study induced an immune response and can be regarded as candidates for the development of a commercial vaccine against C. perfringens type A- and C-induced diarrhea in pigs.


Subject(s)
Bacterial Vaccines/immunology , Immunity, Humoral/immunology , Immunization, Passive , Swine Diseases/immunology , Toxoids/immunology , Animals , Animals, Newborn , Antibodies, Neutralizing , Bacterial Vaccines/genetics , Bacterial Vaccines/pharmacology , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Diarrhea/microbiology , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli/genetics , Female , Pregnancy , Rabbits , Swine , Swine Diseases/prevention & control , Toxoids/genetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...