Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Sci Total Environ ; 944: 173875, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866158

ABSTRACT

West Nile (WNV) is a zoonotic arbovirus with an expanding geographical range and epidemic activity in Europe. Not having yet experienced a human-associated epidemic, Portugal remains an outlier in the Mediterranean basin. In this study, we apply ecological niche modelling informed by WNV historical evidence and a multitude of environmental variables from across Portugal. We identify that ecological backgrounds compatible with WNV historical circulation are mostly restricted to the south, characterized by a warmer and drier climate, high avian diversity, specific avian species and land types. We estimate WNV ecological suitability across the country, identifying overlaps with the distributions of the three relevant hosts (humans, birds, equines) for public and animal health. From this, we propose a category-based spatial framework providing first of a kind valuable insights for WNV surveillance in Portugal under the One Health nexus. We forecast that near future climate trends alone will contribute to pushing adequate WNV ecological suitability northwards, towards regions with higher human density. This unique perspective on the past, present and future ecology of WNV addresses existing national knowledge gaps, enhances our understanding of the evolving emergence of WNV, and offers opportunities to prepare and respond to the first human-associated epidemic in Portugal.

2.
Environ Pollut ; 356: 124241, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825220

ABSTRACT

Staphylococcus aureus thrives at animal-human-environment interfaces. A large-scale work from our group indicated that antimicrobial resistance (AMR) in commensal S. aureus strains from wild ungulates is associated with agricultural land cover and livestock farming, raising the hypothesis that AMR genes in wildlife strains may originate from different hosts, namely via exchange of mobile genetic elements (MGE). In this work, we generate the largest available dataset of S. aureus draft genomes from wild ungulates in Portugal and explore their mobilome, which can determine important traits such as AMR, virulence, and host specificity, to understand MGE exchange. Core genome multi-locus sequence typing based on 98 newly generated draft genomes and 101 publicly available genomes from Portugal demonstrated that the genomic relatedness of S. aureus from wild ungulates assigned to livestock-associated sequence types (ST) is greater compared to wild ungulate isolates assigned to human-associated STs. Screening of host specificity determinants disclosed the unexpected presence in wildlife of the immune evasion cluster encoded in φSa3 prophage, described as a human-specific virulence determinant. Additionally, two plasmids, pAVX and pETB, previously associated with avian species and humans, respectively, and the Tn553 transposon were detected. Both pETB and Tn553 encode penicillin resistance through blaZ. Pangenome analysis of wild ungulate isolates shows a core genome fraction of 2133 genes, with isolates assigned to ST72 and ST3224 being distinguished from the remaining by MGEs, although there is no reported role of these in adaptation to wildlife. AMR related gene clusters found in the shell genome are directly linked to resistance against penicillin, macrolides, fosfomycin, and aminoglycosides, and they represent mobile ARGs. Altogether, our findings support epidemiological interactions of human and non-human hosts at interfaces, with MGE exchange, including AMR determinants, associated with putative indirect movements of S. aureus among human and wildlife hosts that might be bridged by livestock.

3.
Sci Total Environ ; 933: 173027, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38729368

ABSTRACT

Staphylococcus aureus is a versatile pathobiont, exhibiting a broad host range, including humans, other mammals, and avian species. Host specificity determinants, virulence, and antimicrobial resistance genes are often shared by strains circulating at the animal-human interface. While transmission dynamics studies have shown strain exchange between humans and livestock, knowledge of the source, genetic diversification, and transmission drivers of S. aureus in wildlife lag behind. In this work, we explore a wide array of S. aureus genomes from different sources in the Iberian Peninsula to understand population structure, gene content and niche adaptation at the human-livestock-wildlife nexus. Through Bayesian inference, we address the hypothesis that S. aureus strains in wildlife originate from humanized landscapes, either from contact with humans or through interactions with livestock. Phylogenetic reconstruction applied to whole genome sequence data was completed with a dataset of 450 isolates featuring multiple clones from the 1990-2022 period and a subset of CC398 strains representing the 2008-2022 period. Phylodynamic signatures of S. aureus from the Iberian Peninsula suggest widespread circulation of most clones among humans before jumping to other hosts. The number of transitions of CC398 strains within each host category (human, livestock, wildlife) was high (88.26 %), while the posterior probability of transitions from livestock to wildlife was remarkably high (0.99). Microbial genome-wide association analysis did not evidence genome rearrangements nor biomarkers suggesting S. aureus niche adaptation to wildlife, thus supporting recent spill overs. Altogether, our findings indicate that S. aureus isolates collected in the past years from wildlife most likely represent multiple introduction events from livestock. The clonal origin of CC398 and its potential to disseminate and evolve through different animal host species are highlighted, calling for management practices at the livestock-wildlife axis to improve biosecurity and thus restrict S. aureus transmission and niche expansion along gradients of human influence.


Subject(s)
Animals, Wild , Livestock , Staphylococcal Infections , Staphylococcus aureus , Animals , Livestock/microbiology , Staphylococcus aureus/genetics , Staphylococcal Infections/veterinary , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Animals, Wild/microbiology , Spain , Humans , Phylogeny , Portugal/epidemiology
4.
Microbiol Spectr ; : e0382923, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771094

ABSTRACT

Mycobacterium bovis causes animal tuberculosis in livestock and wildlife, with an impact on animal health and production, wildlife management, and public health. In this work, we sampled a multi-host tuberculosis community from the official hotspot risk area of Portugal over 16 years, generating the largest available data set in the country. Using phylogenetic and ecological modeling, we aimed to reconstruct the history of circulating lineages across the livestock-wildlife interface to inform intervention and the implementation of genomic surveillance within the official eradication plan. We find evidence for the co-circulation of M. bovis European 1 (Eu1), Eu2, and Eu3 clonal complexes, with Eu3 providing sufficient temporal signal for further phylogenetic investigation. The Eu3 most recent common ancestor (bovine) was dated in the 1990s, subsequently transitioning to wildlife (red deer and wild boar). Isolate clustering based on sample metadata was used to inform phylogenetic inference, unravelng frequent transmission between two clusters that represent an ecological corridor of previously unrecognized importance in Portugal. The latter was associated with transmission at the livestock-wildlife interface toward locations with higher temperature and precipitation, lower agriculture and road density, and lower host densities. This is the first analysis of M. bovis Eu3 complex in Iberia, shedding light on background ecological factors underlying long-term transmission and informing where efforts could be focused within the larger hotspot risk area of Portugal. IMPORTANCE: Efforts to strengthen surveillance and control of animal tuberculosis (TB) are ongoing worlwide. Here, we developed an eco-phylodynamic framework based on discrete phylogenetic approaches informed by M. bovis whole-genome sequence data representing a multi-host transmission system at the livestock-wildlife interface, within a rich ecological landscape in Portugal, to understand transmission processes and translate this knowledge into disease management benefits. We find evidence for the co-circulation of several M. bovis clades, with frequent transmission of the Eu3 lineage among cattle and wildlife populations. Most transition events between different ecological settings took place toward host, climate and land use gradients, underscoring animal TB expansion and a potential corridor of unrecognized importance for M. bovis maintenance. Results stress that animal TB is an established wildlife disease without ecological barriers, showing that control measures in place are insufficient to prevent long-distance transmission and spillover across multi-host communities, demanding new interventions targeting livestock-wildlife interactions.

5.
J Hazard Mater ; 472: 134473, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703681

ABSTRACT

Spreading of Mycobacterium bovis causing animal tuberculosis (TB) at livestock-wildlife-environment interfaces remains a significant problem. Recently, we provided evidence of widespread environmental contamination of an endemic animal TB setting with viable and dormant M. bovis cells able to recover metabolic activity, making indirect transmission via environmental contamination plausible. We now report the first whole genome sequences of M. bovis recovered from the environment. We establish epidemiological links at the environment-animal interface by phylogenomic comparison of these M. bovis genomes with those isolated from livestock and wild ungulates from the same area. Environmental and animal genomes are highly intertwined and distribute similarly into the same M. bovis lineages, supporting several instances of environmental contamination. This study provides compelling evidence of M. bovis excretion into the environment and viability maintenance, supporting the environment as a potential source of new infection. These insights have clear implications for policy formulation, advocating environmental surveillance and an ecosystem perspective in TB control programs. ENVIRONMENTAL IMPLICATION: We report the first whole genome sequences of M. bovis from the environment and establish epidemiological links at the environment-animal interface, demonstrating close phylogenomic relatedness of animal and environmental M. bovis. Definitive evidence of M. bovis excretion into the environment with viability maintenance is provided, supporting the environment as a potential source of new infection. Implications of this work include methodological innovations offering a tool to resolve indirect transmission chains and support customized biosecurity measures. Policy formulation aiming at the control of animal tuberculosis and cost mitigation should consider these findings, encouraging environmental surveillance in official eradication programmes.


Subject(s)
Mycobacterium bovis , Phylogeny , Whole Genome Sequencing , Mycobacterium bovis/genetics , Animals , Genome, Bacterial , Tuberculosis, Bovine/transmission , Tuberculosis, Bovine/microbiology , Tuberculosis/transmission , Tuberculosis/microbiology , Cattle , Environmental Microbiology , Animals, Wild/microbiology
6.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38612679

ABSTRACT

Epidemiological surveillance of animal tuberculosis (TB) based on whole genome sequencing (WGS) of Mycobacterium bovis has recently gained track due to its high resolution to identify infection sources, characterize the pathogen population structure, and facilitate contact tracing. However, the workflow from bacterial isolation to sequence data analysis has several technical challenges that may severely impact the power to understand the epidemiological scenario and inform outbreak response. While trying to use archived DNA from cultured samples obtained during routine official surveillance of animal TB in Portugal, we struggled against three major challenges: the low amount of M. bovis DNA obtained from routinely processed animal samples; the lack of purity of M. bovis DNA, i.e., high levels of contamination with DNA from other organisms; and the co-occurrence of more than one M. bovis strain per sample (within-host mixed infection). The loss of isolated genomes generates missed links in transmission chain reconstruction, hampering the biological and epidemiological interpretation of data as a whole. Upon identification of these challenges, we implemented an integrated solution framework based on whole genome amplification and a dedicated computational pipeline to minimize their effects and recover as many genomes as possible. With the approaches described herein, we were able to recover 62 out of 100 samples that would have otherwise been lost. Based on these results, we discuss adjustments that should be made in official and research laboratories to facilitate the sequential implementation of bacteriological culture, PCR, downstream genomics, and computational-based methods. All of this in a time frame supporting data-driven intervention.


Subject(s)
Coinfection , Mycobacterium bovis , Tuberculosis , Animals , Mycobacterium bovis/genetics , Tuberculosis/epidemiology , Tuberculosis/veterinary , DNA , Genomics
7.
Sci Total Environ ; 921: 170961, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38367735

ABSTRACT

As the COVID-19 pandemic reached its peak, many countries implemented genomic surveillance systems to track the evolution and transmission of SARS-CoV-2. Transition from the pandemic to the endemic phase prioritized alternative testing strategies to maintain effective epidemic surveillance at the population level, with less intensive sequencing efforts. One such promising approach was Wastewater-Based Surveillance (WBS), which offers non-invasive, cost-effective means for analysing virus trends at the sewershed level. From 2020 onwards, wastewater has been recognized as an instrumental source of information for public health, with national and international authorities exploring options to implement national wastewater surveillance systems and increasingly relying on WBS as early warning of potential pathogen outbreaks. In Portugal, several pioneer projects joined the academia, water utilities and Public Administration around WBS. To validate WBS as an effective genomic surveillance strategy, it is crucial to collect long term performance data. In this work, we present one year of systematic SARS-CoV-2 wastewater surveillance in Portugal, representing 35 % of the mainland population. We employed two complementary methods for lineage determination - allelic discrimination by RT-PCR and S-gene sequencing. This combination allowed us to monitor variant evolution in near-real-time and identify low-frequency mutations. Over the course of this year-long study, spanning from May 2022 to April 2023, we successfully tracked the dominant Omicron sub-lineages, their progression and evolution, which aligned with concurrent clinical surveillance data. Our results underscore the effectiveness of WBS as a tracking system for virus variants, with the ability to unveil mutations undetected via massive sequencing of clinical samples from Portugal, demonstrating the ability of WBS to uncover new mutations and detect rare genetic variants. Our findings emphasize that knowledge of the genetic diversity of SARS-CoV-2 at the population level can be extended far beyond via the combination of routine clinical genomic surveillance with wastewater sequencing and genotyping.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Portugal/epidemiology , Wastewater , Pandemics , Wastewater-Based Epidemiological Monitoring , Mutation
8.
Environ Pollut ; 343: 123272, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38160777

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of paratuberculosis, a chronic infection affecting ruminants and other species worldwide. Information on the ecological factors that increase infection risk at the livestock-wildlife-environment interface remains scarce. Thus, this work aimed at determining which factors modulate the exposure of a mammal community within a Mediterranean agro-forestry farmstead to MAP. Through field, molecular and ecological modeling approaches, MAP prevalence, distribution and spatial risk at the livestock-wildlife-environment was estimated in the study area by screening 436 samples (cattle, n = 150; wildlife, n = 206; soil, n = 80). Using molecular detection of IS900 as proxy, MAP was identified in ten wild mammal species. Being a central prey of mesocarnivores in Portugal, the high prevalence of MAP in the wild rabbit (19%) may be related with red fox's (22%). MAP was also detected in cattle managed in the farmstead (animal and herd prevalence, 54% and 100%) and in soil (44%), which may perpetuate intraspecies and interspecies transmission. Wildlife diversity showed a positive influence on MAP presence in wild mammals, while wildlife abundance showed a negative effect. Land use variables exerted distinct degrees of impact upon MAP detection in specific groups of mammals: mixed forest cover showed positive influence on carnivores, and shrubland showed positive effect on wild rabbits. The prevalence of MAP in cattle showed a negative influence on the detection of MAP in lagomorph, which may stem from wild rabbit lower density and avoidance of cattle areas. Based on explanatory variables, the spatial prediction of MAP occurrence in wildlife indicated two hotspots with increased exposure risk but future studies are needed to confirm this projection. This work represents the most comprehensive molecular survey of MAP occurrence and determinants in Mediterranean agroecosystems leveraging the principles and tools of community ecology, debating potential biological and ecological effects underlying MAP transmission.


Subject(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animals , Cattle , Rabbits , Animals, Wild , Livestock , Forestry , Paratuberculosis/epidemiology , Paratuberculosis/microbiology , Mammals , Soil , Feces/microbiology
9.
Emerg Microbes Infect ; 12(2): 2253340, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37640285

ABSTRACT

ABSTRACTAnimal tuberculosis (TB) remains a serious concern for animal and human health. Mycobacterium bovis circulates in multi-host systems, dominated by the European 2 clonal complex (Eu2) in Iberia. In this work, we use genomic epidemiology to infer the emergence, spread, and spatiotemporal patterns of Eu2 in the official epidemiological risk area of animal TB in Portugal. Phylogenetic analysis of 144 M. bovis whole-genome sequences from cattle, wild boar, and red deer, representing the 2002-2021 period, distinguished three Eu2 clades that evolved independently. The major Eu2 clade underwent phylodynamic inferences to estimate the time and location of outbreaks, host transitions, and spatial diffusion as well. The origin of this Eu2 clade was attributed to the red deer population in the Castelo Branco district, near the border with Spain. Most host transitions were intraspecific (80%), while interspecific transmissions between wildlife species (wild boar-red deer), and between wild boar and cattle, were highly supported. Phylogeographic reconstruction evidenced that most transitions (82%) occur within municipalities, highlighting local transmission corridors.Our study indicates that M. bovis continues to spread at the cattle-wildlife interface within the animal TB hotspot area, possibly driven by the foraging behaviour of wild boar near agricultural lands. Red deer seems to be an important driver of TB within wildlife hosts, while the wild boar links the multi-host wildlife community and livestock. This work highlights the value of combining genomic epidemiology with phylodynamic inference to resolve host jumps and spatial patterns of M. bovis, providing real-time clues about points of intervention.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Tuberculosis , Animals , Cattle , Sus scrofa , Deer , Tuberculosis/epidemiology , Tuberculosis/microbiology , Tuberculosis/transmission , Tuberculosis/veterinary , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/transmission , Portugal/epidemiology , Phylogeny
10.
Sci Total Environ ; 891: 164366, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37245818

ABSTRACT

Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTBC), circulates in multi-host mammal communities. While interactions between different host species are mainly indirect, current knowledge postulates interspecific transmission is favored by animal contact with natural substrates contaminated with droplets and fluids from infected animals. However, methodological constraints have severely hampered monitoring of MTBC outside its hosts and the subsequent validation of this hypothesis. In this work, we aimed to evaluate the extent to which environmental contamination with M. bovis occurs in an endemic animal TB setting, taking advantage of a new real-time monitoring tool we recently developed to quantify the proportion of viable and dormant MTBC cell fractions in environmental matrices. Sixty-five natural substrates were collected nearby the International Tagus Natural Park region, in the epidemiological TB risk area in Portugal. These included sediments, sludge, water, and food deployed at unfenced feeding stations. The tripartite workflow included detection, quantification, and sorting of different M. bovis cell populations: total, viable, and dormant. Real-time PCR targeting IS6110 to detect MTBC DNA was performed in parallel. The majority of samples (54 %) contained metabolically active or dormant MTBC cells. Sludge samples had a higher burden of total MTBC cells and a high concentration of viable cells (2.3 × 104 cells/g). Ecological modelling informed by climate, land use, livestock and human disturbance data suggested eucalyptus forest and pasture cover as potential major factors affecting the occurrence of viable MTBC cells in natural matrices. Our study demonstrates, for the first time, the widespread environmental contamination of animal TB hotspots with viable MTBC bacteria and with dormant MTBC cells that are able to recover metabolic activity. Further, we show that viable MTBC cell load in natural substrates is superior to the estimated minimum infective dose, providing real-time insights into the potential magnitude of environmental contamination for indirect TB transmission.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Mycobacterium tuberculosis/genetics , Flow Cytometry , Sewage , Real-Time Polymerase Chain Reaction , Mammals
11.
J Hazard Mater Adv ; 10: 100315, 2023 May.
Article in English | MEDLINE | ID: mdl-37193121

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus led to changes in the lifestyle and human behaviour, which resulted in different consumption patterns of some classes of pharmaceuticals including curative, symptom-relieving, and psychotropic drugs. The trends in the consumption of these compounds are related to their concentrations in wastewater systems, since incompletely metabolised drugs (or their metabolites back transformed into the parental form) may be detected and quantified by analytical methods. Pharmaceuticals are highly recalcitrant compounds and conventional activated sludge processes implemented in wastewater treatment plants (WWTP) are ineffective at degrading these substances. As a results, these compounds end up in waterways or accumulate in the sludge, being a serious concern given their potential effects on ecosystems and public health. Therefore, it is crucial to evaluate the presence of pharmaceuticals in water and sludge to assist in the search for more effective processes. In this work, eight pharmaceuticals from five therapeutic classes were analysed in wastewater and sludge samples collected in two WWTP located in the Northern Portugal, during the third COVID-19 epidemic wave in Portugal. The two WWTP demonstrated a similar pattern with respect to the concentration levels in that period. However, the drugs loads reaching each WWTP were dissimilar when normalising the concentrations to the inlet flow rate. Acetaminophen (ACET) was the compound detected at highest concentrations in aqueous samples of both WWTP (98. 516 µg L - 1 in WWTP2 and 123. 506 µg L - 1in WWTP1), indicating that this drug is extensively used without the need of a prescription, known of general public knowledge as an antipyretic and analgesic agent to treat pain and fever. The concentrations determined in the sludge samples were below 1.65 µg g - 1 in both WWTP, the highest value being found for azithromycin (AZT). This result may be justified by the physico-chemical characteristics of the compound that favour its adsorption to the sludge surface through ionic interactions. It was not possible to establish a clear relationship between the incidence of COVID-19 cases in the sewer catchment and the concentration of drugs detected in the same period. However, looking at the data obtained, the high incidence of COVID-19 in January 2021 is in line with the high concentration of drugs detected in the aqueous and sludge samples but prediction of drug load from viral load data was unfeasible.

12.
Vet Parasitol Reg Stud Reports ; 34: 100759, 2022 09.
Article in English | MEDLINE | ID: mdl-36041795

ABSTRACT

Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are among the most relevant zoonoses in Europe. According to the European Food Safety Authority (EFSA), Echinococcus granulosus sensu lato causing CE is the most significant foodborne parasite in South-Western Europe, followed by Echinococcus multilocularis, the etiological agent of AE. Among the challenges and opportunities highlighted in the literature to combat these diseases are the need to evaluate and increase awareness of stakeholders. In Portugal, Municipal Veterinary Practitioners (MVP) are the animal health authority at the municipality level, playing a crucial role in diagnosis, prevention and control of infectious diseases in animals, helping to mitigate transmission to humans. However, their knowledge, attitudes, and practices (KAP) towards CE, as well as awareness of AE expansion across Europe, remain overlooked. In this work, a cross-sectional study was conducted for the first time in Portugal to bridge knowledge gaps concerning CE and AE, using an online self-administered questionnaire collecting information on the municipal kennel, KAP towards CE, and understanding of AE epidemiology. Eighty-three MVP from mainland and islands completed the questionnaire, with highest representability from the central-northern region. MVP had, on average, a medium to high level of knowledge of CE but acquaintance with AE was insufficient, although echinococcosis was frequently mentioned as target of health education sessions (77.0%). A high rate (60%) of reported entries into municipal kennels of stray dogs originating from countries with AE endemic areas was registered, suggesting that the presence of these potentially AE-infected stray dogs pose public health risks. Most kennels did not perform routine coprological analysis or faecal matter disinfection after dog internal deworming. The lack of proper training and well-conceived written plans of infection control and prevention were evidenced in several kennels. Altogether, our findings highlight the need to update knowledge and practice of MVP under the One Health approach, through reinforced education, training and communication involving all stakeholders.


Subject(s)
Dog Diseases , Echinococcosis , Animals , Cross-Sectional Studies , Dog Diseases/parasitology , Dogs , Echinococcosis/epidemiology , Echinococcosis/prevention & control , Echinococcosis/veterinary , Health Knowledge, Attitudes, Practice , Humans , Prevalence
13.
Environ Pollut ; 306: 119367, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35489528

ABSTRACT

Extended-spectrum ß-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried blaTEM, tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried blaCTX-M-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health.


Subject(s)
Deer , Escherichia coli Infections , Escherichia coli Proteins , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , beta-Lactamases/genetics
14.
Environ Pollut ; 303: 119116, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35276250

ABSTRACT

Staphylococcus aureus is a human pathobiont (i.e., a commensal microorganism that is potentially pathogenic under certain conditions), a nosocomial pathogen and a leading cause of morbidity and mortality in humans. S. aureus is also a commensal and pathogen of companion animals and livestock. The dissemination of antimicrobial resistant (AMR) S. aureus, particularly methicillin-resistant (MRSA), has been associated to its ability for establishing new reservoirs, but limited attention has been devoted to the role of the environment. To fill this gap, we aimed to characterize animal carrier status, AMR phenotypes, predominant clonal lineages and their relationship with clinical and food-chain settings, as well as to find predictors of AMR occurrence. Nasal swabs (n = 254) from wild boar (n = 177), red deer (n = 54) and fallow deer (n = 23) hunted in Portugal, during the season 2019/2020, yielded an overall carrier proportion of 35.8%, ranging from 53.7% for red deer and 32.2% for wild boar to 21.7% for fallow deer. MRSA from wild boar and phenotypically linezolid-resistant S. aureus from wild boar and red deer were isolated, indicating that resistance to antimicrobials restricted to clinical practice also occurs in wildlife. The most prevalent genotypes were t11502/ST2678 (29.6%) and t12939/ST2678 (9.4%), previously reported in wild boar from Spain. Clonal lineages reported in humans and livestock, like CC1, CC5 or CC8 (19.1%) and ST425, CC133 or CC398 (23.5%), respectively, were also found. The sequence type ST544, previously restricted to humans, is described in wildlife for the first time. We also identified that land use (agricultural land cover), human driven disturbance (swine abundance) and host-related factors (sex) determine resistance occurrence. These findings suggest that antibiotics used in clinical settings, agriculture and livestock farming, spill over to wildlife, leading to AMR emergence, with potential biological, ecological, and human health effects. This work is one of the most comprehensive surveys in Europe of S. aureus occurrence and determinants among widely distributed wild ungulates.


Subject(s)
Deer , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Animals, Wild , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Farms , Livestock , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Staphylococcus aureus , Swine
15.
Sci Total Environ ; 829: 154699, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35318052

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous bacterium, successfully exploiting a variety of environmental niches due to its remarkable metabolic versatility. The World Health Organization classifies P. aeruginosa as a "priority pathogen" due to its a great ability to overcome the action of antimicrobials, including carbapenems. Hitherto, most studies have focused on clinical settings from humans, but much less on animal and environmental settings, particularly on wildlife. In this work, we report the isolation of a carbapenem-resistant Pseudomonas aeruginosa strain recovered from the faeces of a red deer adult female sampled in a humanized area. This isolate was obtained during a nationwide survey on antimicrobial resistance in wildlife aimed to determine the occurrence of carbapenem-resistant bacteria among 181 widely distributed wild ungulates. This P. aeruginosa isolate was found to be a high-risk clone, belonging to the sequence type (ST) 274. The genomic analysis of P. aeruginosa isolate UP4, classified this isolate as belonging to serogroup O3, which was also found to harbour the genes blaPAO, blaPDC-24, blaOXA-486 (encoding resistance to beta-lactams), aph(3')-IIb (aminoglycosides resistance), fosA (fosfomycin resistance) and catB7 (chloramphenicol resistance). Antimicrobial susceptibility screening, according to EUCAST, showed resistance to imipenem and intermediate resistance to meropenem and doripenem. To our knowledge, this is the first description of carbapenem-resistant P. aeruginosa in deer in Europe. Our results highlight the importance of wild ungulates either as victims of human activity or amplifiers of AMR, either way with potential impacts on animal, human and ecosystem health, since excretion of AMR bacteria might directly or indirectly contaminate other animals and the surrounding environment, perpetuating the spill-over and chain dissemination of AMR determinants.


Subject(s)
Deer , Pseudomonas Infections , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Carbapenems/metabolism , Carbapenems/pharmacology , Clone Cells , Ecosystem , Female , Microbial Sensitivity Tests , Portugal , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas Infections/veterinary , Pseudomonas aeruginosa/metabolism , beta-Lactamases/metabolism
16.
J Hazard Mater ; 432: 128687, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35305414

ABSTRACT

Mycobacterium bovis causes tuberculosis (TB) at the human-wildlife-livestock interface. Environmental persistence of M. bovis excreted by infected hosts may cause indirect transmission to other animals. However, methodological constrains hamper assessment of M. bovis viability and molecular signature in environmental matrices. In this work, an innovative, modular, and highly efficient single-cell workflow combining flow cytometry (FLOW), fluorescence in situ hybridization (FISH), and fluorescence-activated cell sorting (FACS) was developed, allowing detection, quantification, and sorting of viable and dormant M. bovis cells from environmental matrices. Validation with spiked water and sediments showed high efficiency (90%) of cell recovery, with high linearity between expected and observed results, both in cell viability evaluation (r2 =0.93) and FISH-labelled M. bovis cells quantification (r2 ≥0.96). The limit of detection was established at 105 cells/g of soil in the cell viability step and 102 cells/g of soil in the taxonomical labelling stage. Moreover, FACS efficiency attained noteworthy recovery yield (50%) and purity (60% viable cells; 70% taxonomically labelled M. bovis). This new methodology represents a huge step for M. bovis assessment outside the mammal host, offering the rapid quantification of M. bovis cell load and cell viability, including viable but non-culturable cells, and further downstream cell analyses after FACS. Subsequent environmental data integration with the clinical component will expand knowledge on transmission routes, promising new paths in TB research and an intervention tool to mitigate the underlying biohazard.


Subject(s)
Mycobacterium bovis , Animals , Animals, Wild/microbiology , Flow Cytometry , In Situ Hybridization, Fluorescence , Mammals , Mycobacterium bovis/genetics , Soil
17.
Sci Total Environ ; 815: 152914, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34999067

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA has been extensively detected in raw wastewater in studies exploring wastewater-based epidemiology (WBE) for early warning purposes. Nonetheless, only a few limited studies investigated the presence of SARS-CoV-2 in treated wastewaters to determine the potential health risks across the water cycle. The detection of SARS-CoV-2 has been done mostly by RT-qPCR and ddPCR, which only provides information on the presence of nucleic acids rather than information on potential infectivity. In this study, we set to develop and evaluate the use of viability RT-qPCR for the selective discrimination and surveillance of infectious SARS-CoV-2 in secondary-treated wastewater. Enzymatic (nuclease) and viability dye (Reagent D) pretreatments were applied to infer infectivity through RT-qPCR using porcine epidemic diarrhea virus (PEDV) as a CoV surrogate. Infectivity tests were first performed on PEDV purified RNA, then on infectious and heat-inactivated PEDV, and finally on heat inactivated PEDV spiked in concentrated secondary-treated wastewater. The two viability RT-qPCR methods were then applied to 27 secondary-treated wastewater samples positive for SARS-CoV-2 RNA at the outlet of five large urban wastewater treatment plants in Portugal. Reagent D pretreatment showed similar behavior to cell culture for heat-inactivated PEDV and both viability RT-qPCR methods performed comparably to VERO E6 cell culture for SARS-CoV-2 present in secondary-treated wastewater, eliminating completely the RT-qPCR signal. Our study demonstrated the lack of infectious SARS-CoV-2 viral particles on secondary-treated wastewater through the application of two pretreatment methods for the rapid inference of infectivity through RT-qPCR, showing their potential application in environmental screening. This study addressed a knowledge gap on the public health risks of SARS-CoV-2 across the water cycle.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cell Culture Techniques , Humans , RNA, Viral , Swine , Wastewater
18.
Sci Total Environ ; 806(Pt 2): 150682, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34600998

ABSTRACT

In environmental microbiology, the ability to assess, in a high-throughput way, single-cells within microbial communities is key to understand their heterogeneity. Fluorescence in situ hybridization (FISH) uses fluorescently labeled oligonucleotide probes to detect, identify, and quantify single cells of specific taxonomic groups. The combination of Flow Cytometry (FLOW) with FISH (FLOW-FISH) enables high-throughput quantification of complex whole cell populations, which when associated with fluorescence-activated cell sorting (FACS) enables sorting of target microorganisms. These sorted cells may be investigated in many ways, for instance opening new avenues for cytomics at a single-cell scale. In this review, an overview of FISH and FLOW methodologies is provided, addressing conventional methods, signal amplification approaches, common fluorophores for cell physiology parameters evaluation, and model variation techniques as well. The coupling of FLOW-FISH-FACS is explored in the context of different downstream applications of sorted cells. Current and emerging applications in environmental microbiology to outline the interactions and processes of complex microbial communities within soil, water, animal microbiota, polymicrobial biofilms, and food samples, are described.


Subject(s)
Microbiota , Animals , Environmental Microbiology , Flow Cytometry , In Situ Hybridization, Fluorescence
19.
Sci Total Environ ; 804: 150264, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34798759

ABSTRACT

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater produced interest in its use for sentinel surveillance at a community level and as a complementary approach to syndromic surveillance. With this work, we set the foundations for wastewater-based epidemiology (WBE) in Portugal by monitoring the trends of SARS-CoV-2 RNA circulation in the community, on a nationwide perspective during different epidemiological phases of the pandemic. The Charité assays (E_Sarbecco, RdRP, and N_Sarbecco) were applied to monitor, over 32-weeks (April to December 2020), the dynamics of SARS-CoV-2 RNA at the inlet of five wastewater treatment plants (WWTP), which together serve more than two million people in Portugal. Raw wastewater from three Coronavirus disease 2019 (COVID-19) reference hospitals was also analyzed during this period. In total, more than 600 samples were tested. For the first weeks, detection of SARS-CoV-2 RNA was sporadic, with concentrations varying from 103 to 105 genome copies per liter (GC/L). Prevalence of SARS-CoV-2 RNA increased steeply by the end of May into late June, mainly in Lisboa e Vale do Tejo region (LVT), during the reopening phase. After the summer, with the reopening of schools in mid-September and return to partial face-to-face work, a pronounced increase of SARS-CoV-2 RNA in wastewater was detected. In the LVT area, SARS-CoV-2 RNA load agreed with reported trends in hotspots of infection. Synchrony between trends of SARS-CoV-2 RNA in raw wastewater and daily new COVID-19 cases highlights the value of WBE as a surveillance tool, particularly after the phasing out of the epidemiological curve and when hotspots of disease re-emerge in the population which might be difficult to spot based solely on syndromic surveillance and contact tracing. This is the first study crossing several epidemiological stages highlighting the long-term use of WBE for SARS-CoV-2.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Portugal/epidemiology , RNA, Viral , SARS-CoV-2 , Wastewater
20.
J Environ Manage ; 304: 114296, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34923418

ABSTRACT

Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a powerful tool to complement syndromic surveillance. Although detection of SARS-CoV-2 in raw wastewater may be prompted with good recoveries during periods of high community prevalence, in the early stages of population outbreaks concentration procedures are required to overcome low viral concentrations. Several methods have become available for the recovery of SARS-CoV-2 from raw wastewater, generally involving filtration. However, these methods are limited to small sample volumes, possibly missing the early stages of virus circulation, and restrained applicability across different water matrices. The aim of this study was thus to evaluate the performance of three methods enabling the concentration of SARS-CoV-2 from large volumes of wastewater: i) hollow fiber filtration using the inuvai R180, with an enhanced elution protocol and polyethylene glycol (PEG) precipitation; ii) PEG precipitation; and iii) skimmed milk flocculation. The performance of the three approaches was evaluated in wastewater from multiple wastewater treatment plants (WWTP) with distinct singularities, according to: i) effective volume; ii) percentage of recovery; iii) extraction efficiency; iv) inhibitory effect; and v) the limits of detection and quantification. The inuvai R180 system had the best performance, with detection of spiked control across all samples, with average recovery percentages of 68% for porcine epidemic diarrhea virus (PEDV), with low variability. Mean recoveries for PEG precipitation and skimmed milk flocculation were 9% and 14%, respectively. The inuvai R180 enables the scalability of volumes without negative impact on the costs, time for analysis, and recovery/inhibition. Moreover, hollow fiber ultrafilters favor the concentration of different microbial taxonomic groups. Such combined features make this technology attractive for usage in environmental waters monitoring.


Subject(s)
COVID-19 , Viruses , Animals , Humans , SARS-CoV-2 , Swine , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...