Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38947076

ABSTRACT

Background: The demand for genetic services has outpaced the availability of resources, challenging clinicians untrained in genetic integration into clinical decision-making. The UTHealth Adult Cardiovascular Genomics Certificate (CGC) program trains non-genetic healthcare professionals to recognize, assess, and refer patients with heritable cardiovascular diseases. This asynchronous online course includes 24 modules in three tiers of increasing complexity, using realistic clinical scenarios, interactive dialogues, quizzes, and tests to reinforce learning. We hypothesized that the CGC will increase genomic competencies in this underserved audience and encourage applying genomic concepts in clinical practice. Methods: Required course evaluations include pre- and post-assessments, knowledge checks in each module, and surveys for module-specific feedback. After 6 months, longitudinal feedback surveys gathered data on the long-term impact of the course on clinical practice and conducted focused interviews with learners. Results: The CGC was accredited in September 2022. Principal learners were nurses (24%), nurse practitioners (21%), physicians (16%), and physician assistants. Scores of 283 learners in paired pre- and post-assessments increased specific skills related to recognizing heritable diseases, understanding inheritance patterns, and interpreting genetic tests. Interviews highlighted the CGC's modular structure and linked resources as key strengths. Learners endorsed confidence to use genetic information in clinical practice, such as discussing genetic concepts and risks with patients and referring patients for genetic testing. Learners were highly likely to recommend the CGC to colleagues, citing its role in enhancing heritable disease awareness. Conclusions: The CGC program effectively empowers non-genetic clinicians to master genomic competencies, fostering collaboration to prevent deaths from heritable cardiovascular diseases, and potentially transforming healthcare education and clinical practice.

2.
J Mol Cell Cardiol ; 168: 44-57, 2022 07.
Article in English | MEDLINE | ID: mdl-35447147

ABSTRACT

Obscurin is a large scaffolding protein in striated muscle that maintains sarcolemmal integrity and aligns the sarcoplasmic reticulum with the underlying contractile machinery. Ankyrins are a family of adaptor proteins with some isoforms that interact with obscurin. Previous studies have examined obscurin interacting with individual ankyrins. In this study, we demonstrate that two different ankyrins interact with obscurin's carboxyl terminus via independent ankyrin-binding domains (ABDs). Using in-vitro binding assays, co-precipitation assays, and FLIM-FRET analysis, we show that obscurin interacts with small ankyrin 1.5 (sAnk1.5) and the muscle-specific ankyrin-G isoform (AnkG107). While there is no direct interaction between sAnk1.5 and AnkG107, obscurin connects the two ankyrins both in vitro and in cells. Moreover, AnkG107 recruits ß-spectrin to this macromolecular protein complex and mutating obscurin's ABDs disrupts complex formation. To further characterize AnkG107 interaction with obscurin, we measure obscurin-binding to different AnkG107 isoforms expressed in the heart and find that the first obscurin-binding domain in AnkG107 principally mediates this interaction. We also find that AnkG107 does not bind to filamin-C and displays minimal binding to plectin-1 compared to obscurin. Finally, both sAnk1.5-GFP and AnkG107-CTD-RFP are targeted to the M-lines of ventricular cardiomyocytes and mutating their obscurin-binding domains disrupts the M-line localization of these ankyrin constructs. Altogether, these findings support a model in which obscurin can interact via independent binding domains with two different ankyrin protein complexes to target them to the sarcomeric M-line of ventricular cardiomyocytes.


Subject(s)
Ankyrins , Muscle Proteins , Ankyrins/chemistry , Muscle Proteins/metabolism , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases , Rho Guanine Nucleotide Exchange Factors/genetics
3.
J Mol Cell Cardiol ; 139: 225-237, 2020 02.
Article in English | MEDLINE | ID: mdl-32035138

ABSTRACT

In striated muscles, the large scaffolding protein obscurin and a small SR-integral membrane protein sAnk1.5 control the retention of longitudinal SR across the sarcomere. How a complex of these proteins facilitates localization of longitudinal SR has yet to be resolved, but we hypothesize that obscurin interacts with a complex of sAnk1.5 proteins. To begin to address this hypothesis, we demonstrate that sAnk1.5 interacts with itself and identify two domains mediating self-association. Specifically, we show by co-precipitation and FLIM-FRET analysis that sAnk1.5 and another small AnkR isoform (sAnk1.6) interact with themselves and each other. We demonstrate that obscurin interacts with a complex of sAnk1.5 proteins and that this complex formation is enhanced by obscurin-binding. Using FLIM-FRET analysis, we show that obscurin interacts with sAnk1.5 alone and with sAnk1.6 in the presence of sAnk1.5. We find that sAnk1.5 self-association is disrupted by mutagenesis of residues Arg64-Arg69, residues previously associated with obscurin-binding. Molecular modeling of two interacting sAnk1.5 monomers facilitated the identification of Gly31-Val36 as an additional site of interaction, which was subsequently corroborated by co-precipitation and FLIM-FRET analysis. In closing, these results support a model in which sAnk1.5 forms large oligomers that interact with obscurin to facilitate the retention of longitudinal SR throughout skeletal and cardiac myocytes.


Subject(s)
Ankyrins/chemistry , Amino Acid Sequence , Animals , Ankyrins/metabolism , Binding Sites , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Protein Binding , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/metabolism , Rats , Rho Guanine Nucleotide Exchange Factors/metabolism
4.
Sci Rep ; 7(1): 5522, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28717248

ABSTRACT

Adenylyl cyclase type 9 (AC9) is found tightly associated with the scaffolding protein Yotiao and the IKs ion channel in heart. But apart from potential IKs regulation, physiological roles for AC9 are unknown. We show that loss of AC9 in mice reduces less than 3% of total AC activity in heart but eliminates Yotiao-associated AC activity. AC9-/- mice exhibit no structural abnormalities but show a significant bradycardia, consistent with AC9 expression in sinoatrial node. Global changes in PKA phosphorylation patterns are not altered in AC9-/- heart, however, basal phosphorylation of heat shock protein 20 (Hsp20) is significantly decreased. Hsp20 binds AC9 in a Yotiao-independent manner and deletion of AC9 decreases Hsp20-associated AC activity in heart. In addition, expression of catalytically inactive AC9 in neonatal cardiomyocytes decreases isoproterenol-stimulated Hsp20 phosphorylation, consistent with an AC9-Hsp20 complex. Phosphorylation of Hsp20 occurs largely in ventricles and is vital for the cardioprotective effects of Hsp20. Decreased Hsp20 phosphorylation suggests a potential baseline ventricular defect for AC9-/-. Doppler echocardiography of AC9-/- displays a decrease in the early ventricular filling velocity and ventricular filling ratio (E/A), indicative of grade 1 diastolic dysfunction and emphasizing the importance of local cAMP production in the context of macromolecular complexes.


Subject(s)
Adenylyl Cyclases/metabolism , HSP20 Heat-Shock Proteins/metabolism , Ventricular Function, Left/physiology , A Kinase Anchor Proteins/metabolism , Adenylyl Cyclases/genetics , Animals , Bradycardia/etiology , Bradycardia/veterinary , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Echocardiography , Female , Isoproterenol/pharmacology , KCNQ1 Potassium Channel/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phosphorylation/drug effects , Sinoatrial Node/metabolism
5.
Mol Cell Biol ; 36(24): 3086-3099, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27697864

ABSTRACT

K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Membrane/metabolism , Cyclic GMP-Dependent Protein Kinase Type II/metabolism , Lung Neoplasms/metabolism , Nitric Oxide Synthase Type III/metabolism , ras Proteins/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Dogs , Endocytosis , Gene Expression Regulation, Neoplastic , Humans , Madin Darby Canine Kidney Cells , Nitric Oxide/pharmacology , Phosphorylation , Serine/metabolism , Signal Transduction , Sildenafil Citrate/pharmacology , ras Proteins/chemistry
6.
Sci Rep ; 6: 33530, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27628215

ABSTRACT

Optical control of the heart muscle is a promising strategy for cardiology because it is more specific than traditional electrical stimulation, and allows a higher temporal resolution than pharmacological interventions. Anion channelrhodopsins (ACRs) from cryptophyte algae expressed in cultured neonatal rat ventricular cardiomyocytes produced inhibitory currents at less than one-thousandth of the light intensity required by previously available optogenetic tools, such as the proton pump archaerhodopsin-3 (Arch). Because of their greater photocurrents, ACRs permitted complete inhibition of cardiomyocyte electrical activity under conditions in which Arch was inefficient. Most importantly, ACR expression allowed precisely controlled shortening of the action potential duration by switching on the light during its repolarization phase, which was not possible with previously used optogenetic tools. Optical shortening of cardiac action potentials may benefit pathophysiology research and the development of optogenetic treatments for cardiac disorders such as the long QT syndrome.


Subject(s)
Anions/metabolism , Channelrhodopsins/metabolism , Heart/physiology , Optogenetics , Action Potentials , Animals , Animals, Newborn , Archaeal Proteins/metabolism , Cells, Cultured , Electrophysiological Phenomena , Heart Ventricles/cytology , Myocytes, Cardiac/metabolism , Rats
7.
Cardiovasc Res ; 107(4): 466-77, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26109584

ABSTRACT

AIMS: Excitation-contraction coupling in cardiomyocytes requires the proper targeting and retention of membrane proteins to unique domains by adaptor proteins like ankyrin-B. While ankyrin-B has been shown to interact with a variety of membrane and structural proteins located at different subcellular domains in cardiomyocytes, what regulates the specificity of ankyrin-B for particular interacting proteins remains elusive. METHODS AND RESULTS: Here, we report the identification of two novel ankyrin-B isoforms AnkB-188 and AnkB-212 in human, rat, and mouse hearts. Novel cDNAs for both isoforms were isolated by long-range PCR of reverse-transcribed mRNA isolated from human ventricular tissue. The isoforms can be discriminated based on their function and subcellular distribution in cardiomyocytes. Heterologous overexpression of AnkB-188 increases sodium-calcium exchanger (NCX) membrane expression and current, while selective knockdown of AnkB-188 in cardiomyocytes reduces NCX expression and localization in addition to causing irregular contraction rhythms. Using an isoform-specific antibody, we demonstrate that the expression of AnkB-212 is restricted to striated muscles and is localized to the M-line of cardiomyocytes by interacting with obscurin. Selective knockdown of AnkB-212 significantly attenuates the expression of endogenous ankyrin-B at the M-line but does not disrupt NCX expression at transverse tubules in cardiomyocytes. CONCLUSION: The identification and characterization of two functionally distinct ankyrin-B isoforms in heart provide compelling evidence that alternative splicing of the ANK2 gene regulates the fidelity of ankyrin-B interactions with proteins.


Subject(s)
Ankyrins/genetics , Myocardium/metabolism , Alternative Splicing/genetics , Animals , Cytoskeleton/genetics , Cytoskeleton/metabolism , Humans , Mice , Muscle, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism
8.
PLoS One ; 10(5): e0128177, 2015.
Article in English | MEDLINE | ID: mdl-26024478

ABSTRACT

Ankyrin-G is an adaptor protein that links membrane proteins to the underlying cytoskeletal network. Alternative splicing of the Ank3 gene gives rise to multiple ankyrin-G isoforms in numerous tissues. To date, only one ankyrin-G isoform has been characterized in heart and transcriptional regulation of the Ank3 gene is completely unknown. In this study, we describe the first comprehensive analysis of Ank3 expression in heart. Using a PCR-based screen of cardiac mRNA transcripts, we identify two new exons and 28 alternative splice variants of the Ank3 gene. We measure the relative expression of each splice variant using quantitative real-time PCR and exon-exon boundary spanning primers that specifically amplify individual Ank3 variants. Six variants are rarely expressed (<1%), while the remaining variants display similar expression patterns in three hearts. Of the five first exons in the Ank3 gene, exon 1d is only expressed in heart and skeletal muscle as it was not detected in brain, kidney, cerebellum, and lung. Immunoblot analysis reveals multiple ankyrin-G isoforms in heart, and two ankyrin-G subpopulations are detected in adult cardiomyocytes by immunofluorescence. One population co-localizes with the voltage-gated sodium channel NaV1.5 at the intercalated disc, while the other population expresses at the Z-line. Two of the rare splice variants excise a portion of the ZU5 motif, which encodes the minimal spectrin-binding domain, and these variants lack ß-spectrin binding. Together, these data demonstrate that Ank3 is subject to complex splicing regulation resulting in a diverse population of ankyrin-G isoforms in heart.


Subject(s)
Alternative Splicing , Ankyrins/genetics , Heart/physiology , Animals , Animals, Newborn , Ankyrins/metabolism , Exons , Gene Expression Regulation , Mice , Myocytes, Cardiac/physiology , Protein Isoforms/genetics , RNA, Messenger , Spectrin/metabolism
9.
Circulation ; 124(11): 1212-22, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21859974

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting >2 million patients in the United States alone. Despite decades of research, surprisingly little is known regarding the molecular pathways underlying the pathogenesis of AF. ANK2 encodes ankyrin-B, a multifunctional adapter molecule implicated in membrane targeting of ion channels, transporters, and signaling molecules in excitable cells. METHODS AND RESULTS: In the present study, we report early-onset AF in patients harboring loss-of-function mutations in ANK2. In mice, we show that ankyrin-B deficiency results in atrial electrophysiological dysfunction and increased susceptibility to AF. Moreover, ankyrin-B(+/-) atrial myocytes display shortened action potentials, consistent with human AF. Ankyrin-B is expressed in atrial myocytes, and we demonstrate its requirement for the membrane targeting and function of a subgroup of voltage-gated Ca(2+) channels (Ca(v)1.3) responsible for low voltage-activated L-type Ca(2+) current. Ankyrin-B is associated directly with Ca(v)1.3, and this interaction is regulated by a short, highly conserved motif specific to Ca(v)1.3. Moreover, loss of ankyrin-B in atrial myocytes results in decreased Ca(v)1.3 expression, membrane localization, and function sufficient to produce shortened atrial action potentials and arrhythmias. Finally, we demonstrate reduced ankyrin-B expression in atrial samples of patients with documented AF, further supporting an association between ankyrin-B and AF. CONCLUSIONS: These findings support that reduced ankyrin-B expression or mutations in ANK2 are associated with AF. Additionally, our data demonstrate a novel pathway for ankyrin-B-dependent regulation of Ca(v)1.3 channel membrane targeting and regulation in atrial myocytes.


Subject(s)
Ankyrins/deficiency , Atrial Fibrillation/genetics , Calcium Channels/deficiency , Signal Transduction/physiology , Adult , Aged , Amino Acid Sequence , Animals , Ankyrins/biosynthesis , Ankyrins/genetics , Atrial Fibrillation/metabolism , Calcium Channels/genetics , Child , Female , Humans , Male , Mice , Mice, Knockout , Middle Aged , Molecular Sequence Data , Myocytes, Cardiac/metabolism , Protein Transport/physiology , Rats , Young Adult
10.
Semin Cell Dev Biol ; 22(2): 166-70, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20934528

ABSTRACT

The coordinate activities of ion channels and transporters regulate myocyte membrane excitability and normal cardiac function. Dysfunction in cardiac ion channel and transporter function may result in cardiac arrhythmias and sudden cardiac death. While the past fifteen years have linked defects in ion channel biophysical properties with human disease, more recent findings illustrate that ion channel and transporter localization within cardiomyocytes is equally critical for normal membrane excitability and tissue function. Ankyrins are a family of multifunctional adapter proteins required for the expression, membrane localization, and regulation of select cardiac ion channels and transporters. Notably, loss of ankyrin expression in mice, and ankyrin loss-of-function in humans is now associated with defects in myocyte excitability and cardiac physiology. Here, we provide an overview of the roles of ankyrin polypeptides in cardiac physiology, as well as review other recently identified pathways required for the membrane expression and regulation of key cardiac ion channels and transporters.


Subject(s)
Ankyrins/metabolism , Ion Channels/metabolism , Membrane Transport Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Biological Transport , Humans , Intracellular Space/metabolism
11.
Circ Res ; 107(1): 84-95, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20489164

ABSTRACT

RATIONALE: Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. OBJECTIVE: We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. METHODS AND RESULTS: We report the initial characterization of a large family of membrane trafficking proteins in human heart. We used a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified 4 members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are coexpressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. CONCLUSIONS: Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin-based targeting network, and identify potential new targets to modulate membrane excitability in disease. Notably, these data provide the first link between EHD proteins and a human disease model.


Subject(s)
Carrier Proteins/physiology , Cell Membrane/metabolism , DNA-Binding Proteins/metabolism , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Vesicular Transport Proteins/physiology , Carrier Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/genetics , DNA-Binding Proteins/physiology , Humans , Membrane Proteins/metabolism , Membrane Proteins/physiology , Multigene Family/physiology , Nuclear Proteins/physiology , Protein Structure, Tertiary/genetics , Protein Transport/genetics , Vesicular Transport Proteins/metabolism
12.
J Mol Cell Cardiol ; 49(1): 33-40, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20380837

ABSTRACT

Increasing evidence suggests that cardiac pacemaking is the result of two sinoatrial node (SAN) cell mechanisms: a 'voltage clock' and a Ca(2+) dependent process, or 'Ca(2+) clock.' The voltage clock initiates action potentials (APs) by SAN cell membrane potential depolarization from inward currents, of which the pacemaker current (I(f)) is thought to be particularly important. A Ca(2+) dependent process triggers APs when sarcoplasmic reticulum (SR) Ca(2+) release activates inward current carried by the forward mode of the electrogenic Na(+)/Ca(2+) exchanger (NCX). However, these mechanisms have mostly been defined in rodents or rabbits, but are unexplored in single SAN cells from larger animals. Here, we used patch-clamp and confocal microscope techniques to explore the roles of the voltage and Ca(2+) clock mechanisms in canine SAN pacemaker cells. We found that ZD7288, a selective I(f) antagonist, significantly reduced basal automaticity and induced irregular, arrhythmia-like activity in canine SAN cells. In addition, ZD7288 impaired but did not eliminate the SAN cell rate acceleration by isoproterenol. In contrast, ryanodine significantly reduced the SAN cell acceleration by isoproterenol, while ryanodine reduction of basal automaticity was modest ( approximately 14%) and did not reach statistical significance. Importantly, pretreatment with ryanodine eliminated SR Ca(2+) release, but did not affect basal or isoproterenol-enhanced I(f). Taken together, these results indicate that voltage and Ca(2+) dependent automaticity mechanisms coexist in canine SAN cells, and suggest that I(f) and SR Ca(2+) release cooperate to determine baseline and catecholamine-dependent automaticity in isolated dog SAN cells.


Subject(s)
Calcium/metabolism , Calcium/physiology , Sinoatrial Node , Action Potentials/drug effects , Action Potentials/physiology , Animals , Dogs , Female , Heart , Isoproterenol/metabolism , Isoproterenol/pharmacology , Male , Myocytes, Cardiac/metabolism , Pacemaker, Artificial , Ryanodine/metabolism , Ryanodine/pharmacology , Sarcoplasmic Reticulum/metabolism , Sinoatrial Node/cytology , Sinoatrial Node/metabolism , Sinoatrial Node/physiology
13.
J Cell Mol Med ; 13(11-12): 4364-76, 2009.
Article in English | MEDLINE | ID: mdl-19840192

ABSTRACT

In eukaryotic cells, ankyrins serve as adaptor proteins that link membrane proteins to the underlying cytoskeleton. These adaptor proteins form protein complexes consisting of integral membrane proteins, signalling molecules and cytoskeletal components. With their modular architecture and ability to interact with many proteins, ankyrins organize and stabilize these protein networks, thereby establishing the infrastructure of membrane domains with specialized functions. To this end, ankyrin collaborates with a number of proteins including cytoskeletal proteins, cell adhesion molecules and large structural proteins. This review addresses the targeting and stabilization of protein networks related to ankyrin interactions with the cytoskeletal protein beta-spectrin, L1-cell adhesion molecules and the large myofibrillar protein obscurin. The significance of these interactions for differential targeting of cardiac proteins and neuronal membrane formation is also presented. Finally, this review concludes with a discussion about ankyrin dysfunction in human diseases such as haemolytic anaemia, cardiac arrhythmia and neurological disorders.


Subject(s)
Ankyrins/metabolism , Cell Membrane/metabolism , Animals , Ankyrins/chemistry , Ankyrins/genetics , Disease , Humans , Protein Binding , Protein Stability
14.
Proc Natl Acad Sci U S A ; 106(39): 16669-74, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19805355

ABSTRACT

The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.


Subject(s)
Amino Acid Motifs , Cell Membrane/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Animals , Ankyrins/genetics , Ankyrins/metabolism , Binding Sites , Cells, Cultured , Female , Humans , Male , Mice , Potassium Channels, Inwardly Rectifying/genetics , Transfection
16.
Proc Natl Acad Sci U S A ; 105(40): 15617-22, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18832177

ABSTRACT

The identification of nearly a dozen ion channel genes involved in the genesis of human atrial and ventricular arrhythmias has been critical for the diagnosis and treatment of fatal cardiovascular diseases. In contrast, very little is known about the genetic and molecular mechanisms underlying human sinus node dysfunction (SND). Here, we report a genetic and molecular mechanism for human SND. We mapped two families with highly penetrant and severe SND to the human ANK2 (ankyrin-B/AnkB) locus. Mice heterozygous for AnkB phenocopy human SND displayed severe bradycardia and rate variability. AnkB is essential for normal membrane organization of sinoatrial node cell channels and transporters, and AnkB is required for physiological cardiac pacing. Finally, dysfunction in AnkB-based trafficking pathways causes abnormal sinoatrial node (SAN) electrical activity and SND. Together, our findings associate abnormal channel targeting with human SND and highlight the critical role of local membrane organization for sinoatrial node excitability.


Subject(s)
Ankyrins/genetics , Ankyrins/physiology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Membrane Transport Proteins/metabolism , Sinoatrial Node/physiopathology , Adult , Animals , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Heart Conduction System/physiopathology , Humans , Ion Channels/metabolism , Mice , Mutation , Sinoatrial Node/metabolism
17.
J Biol Chem ; 283(46): 31968-80, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-18782775

ABSTRACT

Ankyrin-B targets ion channels and transporters in excitable cells. Dysfunction in ankyrin-B-based pathways results in defects in cardiac physiology. Despite a wealth of knowledge regarding the role of ankyrin-B for cardiac function, little is known regarding the mechanisms underlying ankyrin-B regulation. Moreover, the pathways underlying ankyrin-B targeting in heart are unclear. We report that alternative splicing regulates ankyrin-B localization and function in cardiomyocytes. Specifically, we identify a novel exon (exon 43') in the ankyrin-B regulatory domain that mediates interaction with the Rho-GEF obscurin. Ankyrin-B transcripts harboring exon 43' represent the primary cardiac isoform in human and mouse. We demonstrate that ankyrin-B and obscurin are co-localized at the M-line of myocytes and co-immunoprecipitate from heart. We define the structural requirements for ankyrin-B/obscurin interaction to two motifs in the ankyrin-B regulatory domain and demonstrate that both are critical for obscurin/ankyrin-B interaction. In addition, we demonstrate that interaction with obscurin is required for ankyrin-B M-line targeting. Specifically, both obscurin-binding motifs are required for the M-line targeting of a GFP-ankyrin-B regulatory domain. Moreover, this construct acts as a dominant-negative by competing with endogenous ankyrin-B for obscurin-binding at the M-line, thus providing a powerful new tool to evaluate the function of obscurin/ankyrin-B interactions. With this new tool, we demonstrate that the obscurin/ankyrin-B interaction is critical for recruitment of PP2A to the cardiac M-line. Together, these data provide the first evidence for the molecular basis of ankyrin-B and PP2A targeting and function at the cardiac M-line. Finally, we report that ankyrin-B R1788W is localized adjacent to the ankyrin-B obscurin-binding motif and increases binding activity for obscurin. In summary, our new findings demonstrate that ANK2 is subject to alternative splicing that gives rise to unique polypeptides with diverse roles in cardiac function.


Subject(s)
Ankyrins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Amino Acid Sequence , Animals , Ankyrins/chemistry , Ankyrins/deficiency , Ankyrins/genetics , Cells, Cultured , Exons/genetics , Humans , Mice , Mice, Knockout , Molecular Sequence Data , Mutation/genetics , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Phosphatase 2 , Protein Serine-Threonine Kinases , RNA Splice Sites/genetics , Rho Guanine Nucleotide Exchange Factors , Sequence Alignment , Sequence Homology, Amino Acid
18.
J Mol Cell Cardiol ; 45(6): 724-34, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18790697

ABSTRACT

Recent findings illustrate a critical role for ankyrin-B function in normal cardiovascular physiology. Specifically, decreased expression of ankyrin-B in mice or human mutations in the ankyrin-B gene (ANK2) results in potentially fatal cardiac arrhythmias. Despite the clear role of ankyrin-B in heart, the mechanisms underlying transcriptional regulation of ANK2 are unknown. In fact, to date there is no description of ANK2 genomic organization. The aims of this study were to provide a comprehensive description of the ANK2 gene and to evaluate the relative expression of alternative splicing events associated with ANK2 transcription in heart. Using reverse-transcriptase PCR on mRNA isolated from human hearts, we identify seven new exons associated with the ANK2 gene including an alternative first exon located approximately 145 kb upstream of the previously-identified first exon. In addition, we identify over thirty alternative splicing events associated with ANK2 mRNA transcripts. Using real-time PCR and exon boundary-spanning primers to selectively amplify these splice variants, we demonstrate that these variants are expressed at varying levels in human heart. Finally, ankyrin-B immunoblot analysis demonstrates the expression of a heterogeneous population of ankyrin-B polypeptides in heart. ANK2 consists of 53 exons that span approximately 560 kb on human chromosome 4. Additionally, our data demonstrates that ANK2 is subject to complex transcriptional regulation that likely results in differential ankyrin-B polypeptide function.


Subject(s)
Alternative Splicing , Ankyrins/biosynthesis , Arrhythmias, Cardiac/metabolism , Muscle Proteins/biosynthesis , Myocardium/metabolism , Alternative Splicing/genetics , Animals , Ankyrins/genetics , Arrhythmias, Cardiac/genetics , Chromosomes, Human, Pair 4/genetics , Chromosomes, Human, Pair 4/metabolism , Exons/genetics , Female , Humans , Male , Mice , Muscle Proteins/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcription, Genetic/genetics
19.
J Cell Biochem ; 104(4): 1244-53, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18275062

ABSTRACT

Inositol 1,4,5-trisphosphate (InsP(3)) receptors are calcium-release channels found in the endoplasmic/sarcoplasmic reticulum (ER/SR) membrane of diverse cell types. InsP(3) receptors release Ca(2+) from ER/SR lumenal stores in response to InsP(3) generated from various stimuli. The complex spatial and temporal patterns of InsP(3) receptor-mediated Ca(2+) release regulate many cellular processes, ranging from gene transcription to memory. Ankyrins are adaptor proteins implicated in the targeting of ion channels and transporters to specialized membrane domains. Multiple independent studies have documented in vitro and in vivo interactions between ankyrin polypeptides and the InsP(3) receptor. Moreover, loss of ankyrin-B leads to loss of InsP(3) receptor membrane expression and stability in cardiomyocytes. Despite extensive biochemical and functional data, the validity of in vivo ankyrin-InsP(3) receptor interactions remains controversial. This controversy is based on inconsistencies between a previously identified ankyrin-binding region on the InsP(3) receptor and InsP(3) receptor topology data that demonstrate the inaccessibility of this lumenal binding site on the InsP(3) receptor to cytosolic ankyrin polypeptides. Here we use two methods to revisit the requirements on InsP(3) receptor for ankyrin binding. We demonstrate that ankyrin-B interacts with the cytoplasmic N-terminal domain of InsP(3) receptor. In summary, our findings demonstrate that the ankyrin-binding site is located on the cytoplasmic face of the InsP(3) receptor, thus validating the feasibility of in vivo ankyrin-InsP(3) receptor interactions.


Subject(s)
Ankyrins/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Ankyrins/chemistry , Binding Sites , Cytoplasm , Humans , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Myocytes, Cardiac , Protein Binding , Protein Transport , Two-Hybrid System Techniques
20.
Circ Cardiovasc Genet ; 1(2): 93-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-20031550

ABSTRACT

BACKGROUND: Spatial and timely variations in QT interval, even within its normal range, may underlie susceptibility to cardiac arrhythmias and sudden cardiac death. Given its important role in cardiac electrophysiology, we hypothesized that common genetic variation in ankyrin-B gene (ANK2) might modify QT interval length. METHODS AND RESULTS: The study population consisted of 1188 participants of the World Health Organizational Multinational Monitoring of Trends and Determinants in Cardiovascular Disease (WHO MONICA) general population survey Cooperative Health Research in the Region of Augsburg (KORA S3). Corrected QT interval was calculated using population specific linear regression formulas. A total of 22 single-nucleotide polymorphisms in the genomic region of ANK2 gene were genotyped using TaqMan technology. In a replication study, 6 single nucleotide polymorphisms were genotyped in 3890 individuals from a second population study (KORA S4). The rare variant of the single-nucleotide polymorphism rs6850768 (allele frequency, 0.28) significantly influenced duration of the QT interval, both in KORA S3 and KORA S4 populations. In homozygotes, the shortening of the QT interval was 3.79 ms (95% CI, 1.48 to 5.58; P=0.001 and P=0.0008 for log-additive and dominant model, respectively) in KORA S3 and 2.94 ms (95% CI, 1.11 to 4.77; P=0.001 and P=0.006 for log-additive and dominant genetic model, respectively) in KORA S4. A common 2-locus haplotype (rs11098171-rs6850768; population frequency, 28%) was associated with a QT interval difference of 2.85 ms (permutation; P=0.006) in KORA S3 and 1.23 ms (permutation; P=0.009) in KORA S4. Reverse transcription-polymerase chain reaction expression analysis of the human ANK2 5' genomic region in the human left ventricular tissue revealed 2 previously unidentified ANK2 5' exons in the proximity of the identified variants. CONCLUSIONS: Common genetic variants juxtaposed with novel exons in the distant 5' genomic region of ANK2 influence the QT interval length in the general population. These findings support the role of ankyrin-B in normal cardiac electric activity.


Subject(s)
Ankyrins/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Electrocardiography , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Homozygote , Humans , Long QT Syndrome/genetics , Male , Middle Aged , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...