Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Int Soc Sports Nutr ; 16(1): 32, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31370896

ABSTRACT

BACKGROUND: The efficacy of sodium citrate supplementation (SC) in exercise performance is unclear. Therefore, the aim of this study was to investigate the effect of SC on skilled tennis performance. METHODS: Ten Brazilian nationally-ranked young male tennis players (age: 17 ± 1 yrs.; stature: 176.7 ± 5.2 cm; body mass: 68.4 ± 7.9 kg) participated in this crossover, placebo-controlled, double-blind study. Upon arrival, at baseline, in both experimental sessions blood was collected, then subjects ingested either sodium citrate (SC - 0.5 g.kg-1BM in capsules of 500 mg) or a placebo (PLA). Two hours later, pre-match blood was collected then skills tests (skill tennis performance test - STPT, repeated-sprint ability shuttle test - RSA) were performed followed by a 1-h simulated match. Immediately following the match, blood was again collected, and STPT, and RSA were administered. RESULTS: All metabolic parameters (i.e. base excess, pH, bicarbonate, and blood lactate) increased (p < 0.001) from baseline to pre-match and post-match in SC condition. Each metabolic parameter was greater (p < 0.001) in SC compared to PLA condition at both pre- and post-match. The SC condition elicited a greater (p < 0.01) shot consistency at post-match in the STPT vs. PLA condition (SC: 58.5 ± 14.8% vs. PLA: 40.4 ± 10.4%). A greater (p < 0.001) amount of games won was observed in the simulated match for SC condition vs. PLA condition (SC: 8.0 ± 1.6 vs. PLA: 6.0 ± 1.7). Additionally, the games won during the simulated match in SC condition was positively correlated with percentage shot consistency (r = 0.67, p < 0.001). CONCLUSIONS: The current findings suggest that SC supplementation is an effective ergogenic aid to enhance skilled tennis performance.


Subject(s)
Athletic Performance , Performance-Enhancing Substances/administration & dosage , Sodium Citrate/administration & dosage , Tennis , Adolescent , Bicarbonates/blood , Cross-Over Studies , Double-Blind Method , Exercise Test , Humans , Lactic Acid/blood , Male , Sports Nutritional Physiological Phenomena
2.
J Strength Cond Res ; 30(3): 851-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26382129

ABSTRACT

The aim of this study was to investigate the responses of young tennis players during 5 different training drills and to compare the responses between drills. Ten (17.0 ± 1.2 years) male tennis players participated in this study. Each athlete completed 5 total training drills. Drills 1-4 consisted of each player returning balls from a ball-serving machine and were stroke/time-controlled over 6 points. The fifth drill was a simulated match (SM) play, between 2 opposing players, and also lasted 6 points. The 4 stroke/time-controlled drills had the following strokes/time for each point: drill 1: 2 strokes/∼4 seconds, drill 2: 4 strokes/∼8 seconds, drill 3: 7 strokes/∼14 seconds, drill 4: 10 strokes/∼20 seconds. Peak heart rate (HR), blood lactate concentration (LA), and rating of perceived exertion (RPE) were measured after the first, third, and sixth point of each drill. Drills were performed in a randomized crossover design; a 2-way repeated-measures analysis of variance was used with significance set at p ≤ 0.05. All dependent variables (HR, LA, and RPE) significantly increased (p ≤ 0.05) as strokes, and time per rally increased in each drill. Furthermore, all variables were elevated to a greater magnitude (p ≤ 0.05) during the 7 and 10 stroke drills after the first, third, and sixth points when compared with the SM and the 2 and 4 stroke drills at the corresponding time points. These results suggest that the physiological responses to tennis training drills were stroke/time-dependent. Therefore, because of the intense intermittent nature of tennis, stroke/time-controlled drills, which require significant physiological demands, should be incorporated along with technically focused shorter drills to fully mimic the conditions of competitive match play.


Subject(s)
Physical Conditioning, Human/methods , Physical Conditioning, Human/physiology , Tennis/physiology , Adolescent , Analysis of Variance , Cross-Over Studies , Heart Rate/physiology , Humans , Lactic Acid/blood , Male , Perception , Physical Exertion , Random Allocation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...