Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(26): 14453-14464, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31210192

ABSTRACT

Single photon ionization and subsequent unimolecular ion decomposition were studied on jet-cooled benzophenone and fluorenone separately, using VUV synchrotron radiation in a photoion/photoelectron coincidence setup. Slow PhotoElectron Spectra (SPES) were recorded in coincidence with either the parent or the fragment ions for hν < 12.5 eV. Dissociative ionization is observed for benzophenone only. The full interpretation of the measurements, including the identification of the neutral and ionic species when dissociative ionization is at play, benefits from high level ab initio computations for determining the equilibrium structures and the energetics of the neutral and ionized molecules and of their fragments. Electronically excited states of the parent molecular ions were calculated also. From this analysis, an accurate experimental determination of the energetics of the benzophenone and fluorenone ions and of their fragmentation channels is available: adiabatic ionization energies of benzophenone at 8.923 ± 0.005 eV and of fluorenone at 8.356 ± 0.007 eV; and appearance energies of benzophenone fragment ions at 11.04 ± 0.02 eV (loss of C6H5), 11.28 ± 0.02 eV (loss of H) and 11.45 ± 0.02 eV (loss of CO). The corresponding fragmentation mechanisms are explored, showing likely concerted bonds rearrangement. Possible pre-ionizing fragmentation is discussed in light of the spectra presented. The structural rigidity of fluorenone diarylketone seems to be the origin of the inhibition of the fragmentation of its cation.

2.
Phys Chem Chem Phys ; 20(17): 11730-11739, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29687125

ABSTRACT

A combined theoretical and experimental approach has been used to investigate the binding energy of a ruthenium metalloporphyrin ligated with CO, ruthenium tetraphenylporphyrin [RuII TPP], in the RuII oxidation degree. Measurements performed with VUV ionization using the DESIRS beamline at Synchrotron SOLEIL led to adiabatic ionization energies of [RuII TPP] and its complex with CO, [RuII TPP-CO], of 6.48 ± 0.03 eV and 6.60 ± 0.03 eV, respectively, while the ion dissociation threshold of [RuII TPP-CO]+ is measured to be 8.36 ± 0.03 eV using the ground-state neutral complex. These experimental data are used to derive the binding energies of the CO ligand in neutral and cationic complexes (1.88 ± 0.06 eV and 1.76 ± 0.06 eV, respectively) using a Born-Haber cycle. Density functional theory calculations, in very satisfactory agreement with the experimental results, help to get insights into the metal-ligand bond. Notably, the high ligation energies can be rationalized in terms of the ruthenium orbital structure, which is singular compared to that of the iron atom. Thus, beyond indications of a strengthening of the Ru-CO bond due to the decrease in the CO vibrational frequency in the complex as compared to the Fe-CO bond, high-level calculations are essential to accurately describe the metal ligand (CO) bond and show that the Ru-CO bond energy is strongly affected by the splitting of triplet and singlet spin states in uncomplexed [Ru TPP].

3.
J Phys Chem A ; 115(25): 7310-5, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21520905

ABSTRACT

Reactions of (14)N(+)((3)P), (15)N(+)((3)P), and Kr(+) with propane, propene, and propyne were studied using the selected ion flow tube, SIFT, technique. Thermal rate constants in all N(+)/C(3) systems were k = (2 ± 0.4) × 10(-9) cm(3) molecule(-1) s(-1), close to the collisional rate constants. With propane and propene, only hydrocarbon ions were found among the products of reactions with N(+); in propyne about 15% of the products were N-containing ions (C(3)H(2)N(+), C(2)H(4)N(+), C(2)H(3)N(+), C(2)H(2)N(+)), and the rest were hydrocarbon ions. A comparison with product ions from electron transfer between Kr(+) (of recombination energy similar to that for N(+)((3)P)) and the C(3) hydrocarbons and further analysis of the results led to an estimation of an approximate ratio of electron transfer vs hydride-ion transfer reactions leading to the hydrocarbon product ions: in propane the ratio was 2:1, in propene 3:1, and in propyne 5:1. A fraction of product ions resulted from reactions leading to the excited neutral product N*.

4.
J Phys Chem A ; 115(11): 2225-30, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21366257

ABSTRACT

In this Article, we present mass-selected threshold photoelectron spectra of propargyl as well as the 1- and 3-bromopropargyl radicals. The reactive intermediates were produced by flash pyrolysis of suitable precursors and ionized by VUV synchrotron radiation. The TPES of the propargyl radical was simulated using data from a recent high-level computational study. An ionization energy (IE) of 8.71 ± 0.02 eV was obtained, in excellent agreement with computations, but slightly above previous experimental IEs. The pyrolysis of 1,3-dibromopropyne delivers both 1- and 3-bromopropargyl radicals that can be distinguished by their different ionization energies (8.34 and 8.16 eV). To explain the vibrational structure, a Franck-Condon simulation was performed, based on DFT calculations, which can account for all major spectral features. Bromopropargyl photoionizes dissociatively beginning at around 10.1 eV. Cationic excited states of 1- and 3-bromopropargyl were tentatively identified. The dissociative photoionization of the precursor (1,3-dibromopropyne) was also examined, delivering an AE(0K) (C(3)H(2)Br(+)/C(3)H(2)Br(2)) of 10.6 eV.

5.
J Phys Chem A ; 114(42): 11269-76, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20545378

ABSTRACT

Cyclopropenylidene (c-C(3)H(2)), chlorocyclopropenylidene (c-C(3)HCl), and their deuterated isotopomers were studied by the threshold photoelectron-photoion coincidence (TPEPICO) technique using VUV synchrotron radiation. The carbenes were generated via flash pyrolysis. In all species a change in geometry is visible upon ionization, with significant activity in the C═C, C-C-stretching mode and, in the case of c-C(3)H(2)/D(2), the C-H-bending mode. The electron is removed from an sp(2) like hybrid orbital centered on the carbene C atom. The mass selected threshold photoelectron (TPE) spectra were fitted by a Franck-Condon simulation, yielding the equilibrium geometry of the cation ground state ((1)A(1)). The adiabatic ionization energy IE(ad) of c-C(3)H(2) was determined to be 9.17 eV, in good agreement with calculations and literature values. Two vibrational wavenumbers of the cation were determined experimentally (ν(3)(+) = 1150 cm(-1) and ν(2)(+) = 1530 cm(-1)). Chlorocyclopropenylidene was also studied by TPE spectroscopy and has a similar IE(ad) of 9.17 eV. The spectrum also shows a vibrational progression that corresponds to the C═C- and C-C-stretching modes of the cation. The equilibrium geometry was also determined by a Franck-Condon fit. The IE(ad) of the deuterated isotopomers, c-C(3)D(2) and c-C(3)DCl, were also determined to be 9.17 eV. The spectra confirm the assignments for the nondeuterated species.


Subject(s)
Cyclopropanes/chemistry , Deuterium/chemistry , Hydrocarbons, Cyclic/chemistry , Mass Spectrometry , Molecular Dynamics Simulation , Molecular Structure , Photoelectron Spectroscopy , Quantum Theory
6.
J Phys Chem A ; 114(14): 4818-30, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20218643

ABSTRACT

Threshold photoelectron spectra (TPES) of the isotopomers of the methyl radical (CH(3), CH(2)D, CHD(2), and CD(3)) have been recorded in the 9.5-10.5 eV VUV photon energy range using third generation synchrotron radiation to investigate the vibrational spectroscopy of the corresponding cations at a 7-11 meV resolution. A threshold photoelectron-photoion coincidence (TPEPICO) spectrometer based on velocity map imaging and Wiley-McLaren time-of-flight has been used to simultaneously record the TPES of several radical species produced in a Ar-seeded beam by dc flash-pyrolysis of nitromethane (CH(x)D(y)NO(2), x + y = 3). Vibrational bands belonging to the symmetric stretching and out-of-plane bending modes have been observed and P, Q, and R branches have been identified in the analysis of the rotational profiles. Vibrational configuration interaction (VCI), in conjunction with near-equilibrium potential energy surfaces calculated by the explicitly correlated coupled cluster method CCSD(T*)-F12a, is used to calculate vibrational frequencies for the four radical isotopomers and the corresponding cations. Agreement with data from high-resolution IR spectroscopy is very good and a large number of predictions is made. In particular, the calculated wavenumbers for the out-of-plane bending vibrations, nu(2)(CH(3)(+)) = 1404 cm(-1), nu(4)(CH(2)D(+)) = 1308 cm(-1), nu(4)(CHD(2)(+)) = 1205 cm(-1), and nu(2)(CD(3)(+)) = 1090 cm(-1), should be accurate to ca. 2 cm(-1). Additionally, computed Franck-Condon factors are used to estimate the importance of autoionization relative to direct ionization. The chosen models globally account for the observed transitions, but in contrast to PES spectroscopy, evidence for rotational and vibrational autoionization is found. It is shown that state-selected methyl cations can be produced by TPEPICO spectroscopy for ion-molecule reaction studies, which are very important for the understanding of the planetary ionosphere chemistry.

7.
J Phys Chem A ; 114(9): 3237-46, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-19947606

ABSTRACT

A pyrolysis source coupled to a supersonic expansion has been used to produce the CH3 radical from two precursors, iodomethane CH3I and nitromethane CH3NO2. The relative ionization yield of CH3 has been recorded at the SOLEIL Synchrotron Radiation source in the range 9.0-11.6 eV, and its ionization threshold has been modeled by taking into account the vibrational and rotational temperature of the radical in the molecular beam. The relative photoionization yield has been normalized to an absolute cross section scale at a fixed wavelength (118.2 nm, sigma(i)(CH3) = 6.7(-1.8)(+2.4) Mb, 95% confidence interval) in an independent laboratory experiment using the same pyrolysis source, a vacuum ultraviolet (VUV) laser, and a carefully calibrated detection chain. The resulting absolute cross section curve is in good agreement with the recently published measurements by Taatjes et al., although with an improved signal-to-noise ratio. The absolute photoionization cross section of CH3I at 118.2 nm has also been measured to be sigma(i)(CH3I) = (48.2 +/- 7.9) Mb, in good agreement with previous electron impact measurements. Finally, the photoionization yield of the iodine atom in its ground state 2P(3/2) has been recorded using the synchrotron source and calibrated for the first time on an absolute cross section scale from our fixed 118.2 nm laser measurement, sigma(i)(I2P(3/2)) = 74(-23)(+33) Mb (95% confidence interval). The ionization curve of atomic iodine is in good agreement, although with slight variations, with the earlier relative ionization yield measured by Berkowitz et al. and is also compared to an earlier calculation of the iodine cross section by Robicheaux and Greene. It is demonstrated that, in the range of pyrolysis temperature used in this work, all the ionization cross sections are temperature-independent. Systematic care has been taken to include all uncertainty sources contributing to the final confidence intervals for the reported results.

SELECTION OF CITATIONS
SEARCH DETAIL
...